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Abstract

Dynamic light scattering (DLS) techniques for studying sizes and shapes of nanoparticles in liquids are reviewed.
In photon correlation spectroscopy (PCS), the time fluctuations in the intensity of light scattered by the particle
dispersion are monitored. For dilute dispersions of spherical nanoparticles, the decay rate of the time autocorrelation
function of these intensity fluctuations is used to directly measure the particle translational diffusion coefficient,
which is in turn related to the particle hydrodynamic radius. For a spherical particle, the hydrodynamic radius is
essentially the same as the geometric particle radius (including any possible solvation layers). PCS is one of the
most commonly used methods for measuring radii of submicron size particles in liquid dispersions. Depolarized
Fabry-Perot interferometry (FPI) is a less common dynamic light scattering technique that is applicable to opti-
cally anisotropic nanoparticles. In FPI the frequency broadening of laser light scattered by the particles is analyzed.
This broadening is proportional to the particle rotational diffusion coefficient, which is in turn related to the par-
ticle dimensions. The translational diffusion coefficient measured by PCS and the rotational diffusion coefficient
measured by depolarized FPI may be combined to obtain the dimensions of non-spherical particles. DLS studies of
liquid dispersions of nanometer-sized oligonucleotides in a water-based buffer are used as examples.

Introduction

Dynamic light scattering (DLS) is the most versa-
tile and useful set of techniques for measuringin situ
the sizes, size distributions, and (in some cases) the
shapes of nanoparticles in liquids (Berne & Pecora,
2000; Chu, 1991; Brown, 1993; Pecora, 1985; Schmitz,
1990). DLS, which has many variations, does not by
itself identify the chemical nature of a nanoparticle.
This demanding task requires information on sam-
ple history or, in the most general case, on species
specific sensors (Vo-Dinh, 2000). Important compet-
ing techniques include drying the sample and using
imaging methods such as electron microscopy. Dry-
ing the sample, however, and/or placing it on or near
a surface can cause changes in the system that may
not accurately reflect the nature of the species in
the liquid dispersion. Other solution sizing techniques

applicable to sizing nanoparticles in liquids include
static scattering of radiation whose wavelength is
comparable to the size of the particle. For nanoparti-
cles, this includes mainly small angle X-ray and neu-
tron scattering (Chu & Liu, 2000). DLS techniques
are ‘hydrodynamic’ techniques in that they directly
measure hydrodynamic quantities, usually the trans-
lational and/or rotational diffusion coefficients, which
are then related to sizes and shapes via theoretical
relations. Other hydrodynamic techniques applicable
to nanoparticles in liquids include Raman correla-
tion spectroscopy (Schrof et al., 1998), fluorescence
correlation spectroscopy (Aragon & Pecora, 1975;
Schrof et al., 1998; Startchev et al., 1998), fluores-
cence depolarization decay (Lakowicz, 1983), fluores-
cence recovery after photobleaching (Bu et al., 1994),
forced Rayleigh scattering (also called holographic
grating spectroscopy) (Graf et al., 2000) and various
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birefringence techniques, such as transient electric
birefringence decay (Eden & Elias, 1983) and the
dynamic optical Kerr effect (Righini, 1993). We limit
ourselves here to discussing DLS techniques – mainly
photon correlation spectroscopy (PCS) and depolarized
Fabry-Perot interferometry (FPI) and their application
to the study of nanoparticles – defined here as par-
ticles with characteristic sizes from about 1 to about
50 nm – dispersed in liquids.

Photon correlation spectroscopy

PCS is now a standard technique that is widely utilized
in biophysics, colloid and polymer laboratories. It may
be used for routine particle characterization as well as
for studies of the nature of interactions of molecules and
particles in liquid dispersions. Commercial apparatus
is available from several instrument companies.

PCS is based on fact that the intensity of light
scattered from a dispersion of particles into a given
scattering angle is the result of interference on the sur-
face of a square-law detector between light scattered
from different particles in the medium. The phases at
the detector of the light scattered from different par-
ticles depend on the relative positions of the particles
relative to the direction of the incoming and scattered
light beams. Thus, at a given instant the total scat-
tered intensity at a given scattering angle depends on
the positions of the particles (structure). The particles,
however, are constantly executing Brownian motion so
that their positions fluctuate. Thus, the scattered inten-
sity also fluctuates. These scattered intensity fluctua-
tions occur on the time scale that it takes a particle
to move a significant fraction of the wavelength of
light.

The scattered intensity itself is a stochastic signal,
since it reflects the thermal (Brownian) motion of the
particles. To extract useful information from the sig-
nal, its time correlation function is computed. This
is usually done using an autocorrelator – a computer
equipped with special boards to allow rapid real-time
calculation of the scattered intensity time correlation
function.

A schematic of a PCS apparatus is shown in Figure 1.
Light from a laser is focused on a sample and the light
scattered at a given scattering angle is collected by a
square law detector – a photomultiplier as shown in the
figure or, as is becoming more common, an avalanche
photodiode (Kaszuba, 1999). The output of the photo-
multiplier is then digitized by a photon counting system

Figure 1. Schematic diagram of a PCS apparatus.

and the output sent to an autocorrelator. A modern
PCS apparatus often utilizes fiber optics guides to both
deliver the light to the sample and collect the scattered
light and bring it to the detector. In fact, fiber optic guid-
ance is essential in applying this technique to strongly
scattering systems (Wiese & Horn, 1991).

This technique and its variants are also known by
several other names. Among them are quasi-elastic
light scattering, intensity fluctuation spectroscopy,
optical (light) beating spectroscopy, and homodyne
(or heterodyne) spectroscopy. DLS and PCS are, how-
ever, now the most common, although as mentioned
above DLS (as well as quasi-elastic light scattering)
is a more general term and also includes usually other
techniques (such as FPI).

The normalized scattered intensity time autocorre-
lation function of the scattered light intensity may be
written as

C(t) ≡ 〈I (t)I (0)〉〈I (0)I (0)〉 =
[
1+ γ [g(1)(t)]2

]
(1)

whereγ is a constant determined by the specific exper-
imental setup andg(1)(t) is the normalized first order
(scattered electric field) time autocorrelation function.
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Note that this function appears squared in Eq. (1). In
an ideal apparatus, the constantγ , often called the
‘coherence factor,’ is equal to 1, so that, in such a case,
the normalized intensity autocorrelation function starts
at a value of 2 at zero time delay and eventually decays
to 1. In practiceγ is usually< 1.

It may be shown for a dilute solution of monodis-
perse nanoparticles thatg(1)(t) is a single exponential
whose time decay is determined by the translational
self-diffusion coefficient of the particleD and the
length of the scattering vectorq:

g(1)(t) = exp(−q2Dt) (2)

The scattering vector length depends on the scatter-
ing angleθ , and the wavelengthλ of the light in the
scattering medium:

q = (4π/λ) sin(θ/2) (3)

As may be seen from Eqs. (2) and (3), PCS, in this case,
directly gives the translational self-diffusion coefficient
of the nanoparticle. Although in principle, a measure-
ment at only one scattering angle is necessary to obtain
D, measurements are usually done at a series of scatter-
ing angles and the decay constant ofg(1)(t) is plotted
versusq2. A straight line with a slope equal toD should
be obtained.

For spherical particles in a dilute dispersion, the
Stokes–Einstein relation relates the translational self-
diffusion coefficient to the particle radiusR

D = kBT/6πηR (4)

wherekB is Boltzmann’s constant,T the absolute tem-
perature andη is the viscosity of the suspending
medium. Thus, for spherical nanoparticles the particle
radius (including any solvation layer) may be derived
from the PCS experiment.

In the more general case in which the particles
are non-spherical or flexible, the radius derived from
the self-diffusion coefficient and the Stokes–Einstein
relation is called the ‘hydrodynamic radius’. The
hydrodynamic radius for non-spherical molecules is, of
course, not equal to a geometrical particle ‘radius’. The
relation between the translational diffusion coefficient
or hydrodynamic radius and the actual dimensions of
non-spherical particles depends on the particle shape.
We discuss this case further below in the section on FPI.

One of the difficulties in applying PCS to nanopar-
ticles is that the scattered light signals are relatively
weak in dilute solutions and the time scales are usually

fast (smaller particles move faster). Thus, relatively
intense (of the order of a 100 mW or more) laser
sources are required to obtain acceptable signal to
noise ratios in these experiments. Recently, the use of
avalanche diodes as detectors instead of photomulti-
plier tubes has made it possible to perform PCS experi-
ments with lower power lasers (Kaszuba, 1999). Lower
power lasers are relatively cheap, easy to operate and
transport and lessen the danger of appreciably heating
the sample.

Polydispersity

Nanoparticle dispersions are often polydisperse; that is,
there may be particles with a distribution of sizes and
shapes rather than particles of a single size and shape.
The particles in the distribution thus, in general, have
different translational self-diffusion coefficients.

For a dilute solution, we may view the particles with
a given diffusion coefficient (denoted byi) as contribut-
ing its own exponential to the first order correlation
function so that

g(1)(t) =
∑
i

Ai exp(−0it) (5)

where0i = q2Di is the reciprocal decay time and
Ai is a weighting factor proportional to the fraction
of the scattered intensity contributed by this subset of
particles.

Thus, the first order time correlation function is now
a sum of exponentials. One technique for characterizing
this sum of exponentials is the method of cumulants.

In the cumulants method, the logarithm of the
normalized correlation functiong(1)(t) is expanded as
a power series in the time:

ln[g(1)(t)] = −K1t + (1/2)K2t
2 + · · · . (6)

The coefficientsKn are the cumulants.K1, the first
cumulant, is equal to the average of the reciprocal relax-
ation timeK1 = 〈(0)〉. The second cumulantK2 is a
measure of the dispersion of the reciprocal relaxation
time around the average value. Note that ifK2 (and
higher order cumulants) are 0, the first order corre-
lation function is a single exponential. The cumulant
method is simple and most commercial autocorrelators
include a computer program for calculating the first
few cumulants.

A more powerful method, which has become the
standard in analyzing PCS data, uses mathematical
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algorithms to perform an inverse Laplace transform on
the data to obtain the distribution function of relaxation
times. Take the continuous limit of the sum in Eq. (5).

g(1)(t) =
∫ ∞

0

A(0) exp(0t) d0 (7)

whereA(0) d0 is the fraction of the correlation func-
tion decaying with reciprocal relaxation time between
0 and0 + d0. Note from Eq. (7) thatg(1)(t) is the
Laplace transform ofA(0).

To findA(0) from measurements ofg(1)(t), we must
invert the Laplace transform. This is an ill-conditioned
problem. It turns out that we cannot simply find the ILT
by picking theA(0) that gives the best least squares
fit to data. Mathematical techniques for performing
such transforms, known as regularization techniques,
have been developed by mathematicians and applied to
the analysis of PCS data by Provencher (Provencher,
1982). Provencher has implemented his technique in
a program called ‘CONTIN’, which has, sometimes
in modified form, become the method of choice for
analyzing PCS data. Basically, this program finds the
smoothest non-negativeA(0) consistent with the data
and the noise in it.

Extensive testing of CONTIN and its variants has
been done. The method gives good estimates for the
widths and peaks of unimodal distributions when the
data has good signal to noise. Tests have also shown
that PCS with CONTIN analysis is capable of resolv-
ing peaks inA(0) as long as the separation of theA(0)
peaks is about a factor of two or more and the areas
under the peaks are not very different (Flamberg &
Pecora, 1984). Thus, it is, with these limitations, pos-
sible to detect and study bimodal particle distributions
by this method. The output of CONTIN is frequently
expressed in hydrodynamic radius rather than0. In
addition, in favorable circumstances, the weight dis-
tribution and number distribution of particles can be
obtained.

Examples of nanoparticle size distributions obtained
using PCS have recently been given by Kaszuba (1999).

Concentration effects

The application of PCS described above to measure
sizes of nanoparticles in liquid dispersions depends
on the validity of the Stokes–Einstein relation and its
analogs for non-spherical particles. The dispersion is

assumed to be so dilute that there are no correlations
between the nanoparticles. In more concentrated solu-
tions the diffusion coefficient measured is the cooper-
ative diffusion coefficient, which in the limit ofq → 0
becomes the mutual diffusion coefficient (Pusey &
Tough, 1985).

If the concentration is not very much higher than
dilute, the measured diffusion coefficient measured by
PCS may be expanded in a power series in the concen-
tration around the self-diffusion coefficient at infinite
dilution,D0

D = D0(1+ kDc + · · · ) (8)

wherekD is a coefficient that is usually positive for
small particles. Thus, the measured diffusion coef-
ficient for particles that do not aggregate increases
with concentration, at least initially. The infinite dilu-
tion self-diffusion coefficientD0 is the quantity that
is used in conjunction with Eq. (4) to obtain the par-
ticle radius. The coefficientkD can be related to the
thermodynamic solution second virial coefficient and
the frictional virial coefficient (Berne & Pecora, 2000;
Pusey & Tough, 1985). In any case, to be assured that
the self-diffusion coefficient at infinite dilution is being
measured, it is desirable to do PCS studies as a func-
tion of nanoparticle concentration and to extrapolate to
infinite dilution.

Depolarized Fabry-Perot interferometry

The rotational diffusion of nanoparticles is usually
too fast to be easily measured by PCS. The mea-
surement of the rotational diffusion coefficient of a
nanoparticle may, however, often be performed using
depolarized FPI. FPI is a DLS technique that utilizes
the fact that light that exhibits intensity fluctuations
is composed of a corresponding range of frequencies
(spectrum). Thus, the frequency distribution of the scat-
tered light contains information about the dynamics of
molecules comprising the scattering system. Depolar-
ized FPI refers to the case in which the incoming laser
beam polarization is perpendicular to the scattering
plane (plane in which the incoming and scattered
beams propagate) and a polarizer is used to select
the component of the scattered beam in the scattering
plane.

An FPI is a high resolution monochrometer
that resolves the scattered light into its component
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frequencies. It is used most often in the frequency
change range from about 1 MHz to 10 GHz. For
nanoparticles the lower part of this range is the most
important and is applicable to particles with char-
acteristic sizes below about 10 nm. One important
caveat is that the rotational motion is manifested in
the depolarized component of the scattered light. For
this component to be appreciably different from zero,
the molecules must be optically anisotropic, that is, its
polarizability in a laboratory-fixed system must vary as
the particle rotates. It should be noted that even spher-
ical particles could, because of their internal struc-
ture, sometimes exhibit an optical anisotropy. In fact,
optically anisotropic spheres have become an impor-
tant tool in colloid science (Piazza & Gegiorgio, 1992;
Piazza et al., 1989; Camins & Russo, 1994).

A schematic of the simplest form of a FPI apparatus
is shown in Figure 2. The light from a laser source is
passed though a polarizer to assure that its polariza-
tion is vertical (perpendicular to the scattering plane)
and then focused onto a sample. The component of
the scattered light with horizontal polarization (that
is, in the scattering plane) is selected by means of
an analyzing polarizer and then, after some optical
processing, is passed into a FPI. The interferometer
scans the spectrum of the scattered light, which is then
detected and analyzed by the photomultiplier tube and
photon counting system. For nanoparticles, a confocal
FPI is often used.

For a dilute solution of cylindrically symmetric
nanoparticles undergoing rotational diffusion, the

Figure 2. Schematic diagram of a depolarized FPI apparatus.

spectrum of depolarized light measure is propor-
tional to

Ivh(ω) = Aβ2 6DR

ω2 + (6DR)2
(9)

whereA is a constant proportional to the nanoparti-
cle concentration,β is the optical anisotropy of the
particle,ω is the frequency difference of the scattered
light from that of the incident light, andDR is the rota-
tional diffusion coefficient of the symmetry axis of the
nanoparticle. The spectrum of scattered light is thus
a ‘Lorentzian’ with a half-width at half-height given
by 6DR.

As in PCS, we may relate the hydrodynamic quan-
tity, in this case, the rotational diffusion coefficient
at infinite dilution, to the particle dimensions. For
a spherical particle the Stokes–Einstein–Debye equa-
tions relatesDR to the particle radius

DR = kBT

8πηR3
. (10)

As we discussed in the section on PCS above, we may
use Eq. (10) for non-spherical particles with the under-
standing that the radius derived (‘rotational hydro-
dynamic radius’) does not correspond to a geometrical
radius. Note from Eq. (10) that the rotational diffusion
coefficient is proportional to the inverse third power of
the particle radius and thus is more sensitive to size
than the translational diffusion coefficient (Eq. (4)).

For non-spherical particles, such as rigid rods and
ellipsoids of revolution, there are equations relating
the infinite dilution translational and rotational diffu-
sion coefficients (and, of course, hydrodynamic radii)
and the actual particle dimensions. The best known of
these are the Perrin relations for ellipsoids of revolution
(Perrin, 1934, 1936). Broersma has derived relations
for long rods (Broersma, 1960, 1980) and Garcia de la
Torre et al. (Tirado & Garcia de la Torre, 1979, 1980;
Tirado et al., 1984; Garcia de la Torre et al., 1984) have
derived expressions applicable to shorter rods.

Since ellipsoids of revolution and rods are each
characterized by two dimensions, two independent
measurements are required to obtain both quantities.
Measurements of bothD andDR are often used in
connection with the theories to obtain both molecular
dimensions. We give an example of the application of
the Garcia de la Torre et al. relations to the interpre-
tation of PCS and depolarized FPI experiments on a
series of oligonucleotides.
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Both PCS and depolarized FPI have been applied
to nanoparticles in liquid dispersions. Depolarized
FPI has been less extensively used than PCS. It is
relatively more difficult to do than PCS and is not as
generally applicable. PCS can usually be used to mea-
sure translational diffusion of particles in the range
from 1 to 1000 nm, although the technique needs spe-
cial care at both limits of this range. Common limita-
tions in PCS for small particles in dilute dispersions
include weak scattering signals and fast decay of the
PCS time correlation function. The weak signal lim-
itation can be overcome in most cases by a variety
of methods – more intense laser sources, higher con-
centrations of nanoparticles, more efficient detectors,
etc. Observing the scattering at smaller scattering angle
and/or using a more viscous suspending liquid can slow
the time decay of the correlation function.

Because of the limited resolution of an FPI, one is
often restricted to nanoparticles below about 10 nm in
characteristic dimension. For larger particles, usually
larger than the upper limit of the nanoparticle size range
(about 50 nm), depolarized PCS may often be used
(Zero & Pecora, 1982). (The set of depolarized DLS
techniques including both depolarized FPI and depo-
larized PCS is often referred to as DDLS). Nevertheless
depolarized FPI is a very powerful technique.

Example – oligonucleotides

To illustrate these techniques, we briefly describe here
PCS and depolarized FPI experiments done by Eimer
and Pecora (1991) on a series of short oligonucleotides.
The oligonucleotides studied were in the B-duplex
form – small double helical, rigid – nanoparticles. They
are good model systems since they can be made almost
monodisperse and thus the complications of polydis-
persity are minimized. As a first approximation, short
double helical oligonucleotides may be modeled as
rigid rods.

For rigid rods, the translational and rotational dif-
fusion coefficients of rigid rods of lengthL and cross-
section diameterd may, respectively, be written in the
forms

D =
(
kBT

3πηL

)
(lnp + ν) (11)

and

DR =
(

3kBT

πηL3

)
(lnp + δ) (12)

wherep = L/d andν and δ are called ‘end-effect’
corrections.

The differences between various theories for the dif-
fusion coefficients of rods are in the end effect cor-
rectionsν andδ. Tirado, Lopez Martinez and Garcia
de la Torre (Tirado & Garcia de la Torre, 1979, 1980;
Tirado et al., 1984; Garcia de la Torre et al., 1984)
have given expressions for these corrections. A polyno-
mial approximation to their numerical results has been
obtained for the range 2< p < 30:

ν = 0.312+ 0.565p−1 − 0.100p−2 (13)

and

δ = −0.662+ 0.917p−1 − 0.050p−2 (14)

A technique for obtaining hydrodynamic dimensions
of rodlike molecules using Eqs. (11)–(14) has been
given by Garcia de la Torre, Lopez Martinez, and Tirado
(Garcia de la Torre et al., 1984). They first compute a
functionf (p) defined as

f (p) =
(

9πη

kBT

)2/3
D

D
1/3
R

= lnp + ν
(lnp + δ)1/3 (15)

The procedure is then to make a theoretical plot off ( p)
versusp based on Eqs. (13) and (14); obtain a value of
f ( p) from measurement ofD andDR; use the theoretical
plot to obtain the experimentalp, and then use thisp
and the experimental diffusion coefficients to obtainL
(andd ) from either (or both) Eqs. (11) and (12).

Eimer and Pecora (1991) performed PCS and depo-
larized FPI experiments on oligonuleotides 8, 12 and 20
base pairs in length in a water-based phosphate buffer
at pH= 7. Measurements were done at various tem-
peratures and then corrected to 20◦C. Figures 3 and 4
show, respectively, translational and rotational diffu-
sion coefficients measured for these oligonucleotides
as functions of oligonucleotide concentration. TheD0

andkD from the straight line fits from Figure 3 and the
DR from Figure 4 (which are constant in the lower con-
centration range studied) are listed in Table 1.

Using theseD0 andDR values and the procedure
of Garcia de la Torre, Lopez Martinez and Tirado to
model the results, they obtain the lengths and diameters
given in the table. We note that to within the error of the
experiment and analysis (about± 0.15 nm) the diam-
eters of this homologous series are the same. This is
taken to indicate that the theoretical relations used are
consistent. It also indicates that the effective hydrody-
namic cross-section rod diameter of DNA is less than
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Figure 3. Translational diffusion coefficients for the oligonu-
cleotides versus concentration corrected to 20◦C. The temperature
range of the measurements was 10–50◦C. From top to bottom:
8-mer, 12-mer, 20-mer.

Table 1. Diffusion coefficients of oligonucleotides at 20◦C and derived dimensions

D0 kD DR f ( p) p L (nm) d (Å)
(10−12 m2 s−1) (10−3 ml mg−1) (106 s−1)

8-mer 152.6 8.5 51.8 1.50 1.43 2.86 20.0
12-mer 134.1 8.0 26.1 1.63 2.10 4.21 20.1
20-mer 108.6 12.9 10.3 1.83 3.59 6.88 19.2

has normally been assumed (2.4–2.6 nm). The larger
hydrodynamic cross-section diameter relative to the
X-ray dimensions found in the solid were attributed to
water of hydration that was carried by the DNA as it
moved through the solution. These larger values, how-
ever, were measured on longer fragments than were
used by Eimer and Pecora. The longer fragments have
diffusion coefficients that are less sensitive to the diam-
eter. The longer ones might also exhibit complications
from flexibility.

The measurements of Eimer and Pecora were
done at relatively high ionic strengths, and dilute

Figure 4. Rotational diffusion coefficients versus concentration
corrected to 20◦C for the three oligonucleotides. From top to bot-
tom: 8-mer, 12-mer, 20-mer. The highest concentration point for
the 8-mer is indicative of aggregation.

concentrations. One complication that occurs in solu-
tions of charged molecules such as the oligonucleotides
(which ionize at pH values near neutral) is that even
at relatively dilute concentrations, the oligonucleotides
can interact through long range Coulomb forces.
At high ionic strengths, obtained by adding a salt such
as NaCl to the solution, these long range forces are
screened by the small ions and the various expressions
given for the diffusion coefficients described above
apply. However, at low ionic strengths these long range
interactions can become important and strongly affect
the diffusion coefficients (Liu et al., 1998). Another
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complication that occurs at low ionic strengths is the
appearance of a ‘slow mode’ in the PCS time correla-
tion function (Skibinska et al., 1999). The origin of the
slow mode is controversial, but it appears to be due to
long range correlation between oligonucleotides.

Since rotational and translational diffusion coef-
ficients are very sensitive to molecular dimensions,
the method may also be used, often in conjunction
with some of the modeling techniques for complex
shapes described in the next section, to monitor
conformational changes such as theB to Z transi-
tion in oligonucleotides (Haber-Pohlmeier & Eimer,
1993), and aggregation and self-assembly processes
in oligonucleotides, proteins and other nanoparticles
(Michielsen & Pecora, 1981; Patkowski et al., 1990;
1991; Eimer & Dorfm̈uller, 1992; Eimer et al., 1993).

Nanoparticles with complex shapes

A more powerful procedure than using simple shapes
such as spheres, rods and ellipsoids of revolution to
model nanoparticles is to use the actual shape of rigid
non-spherical particles at the atomic or monomer
level and then to compute the diffusion coefficients
(or hydrodynamic radii) for this usually complex struc-
ture using sophisticated algorithms (Teller et al., 1979;
Garcia de la Torre & Bloomfield, 1981; Garcia de la
Torre & Rodes, 1983; Garcia de la Torre et al., 1994;
Venable & Pastor, 1988; Byron, 1997; Hellweg et al.,
1997; Banochowicz et al., 2000). The theoretical result
is then compared to experimentally determined dif-
fusion coefficients and hydrodynamic radii. If several
structural models of the nanoparticle are possible, then
this approach may often be used to distinguish between
them. This procedure is often used for biologically
important nanoparticles (proteins, nucleic acids, etc.) in
which it is desirable to determine details of the particle
structure.

Conclusion

DLS is the method of choice for studying nanoparticles
in liquids. It will play an even more important role in
coming years as the experimental techniques are fur-
ther refined and the range of application and ease of use
are extended. Powerful DLS techniques not described
above may also be applied to specialized situations.
For instance, electrophoretic light scattering allows the

simultaneous measurement of electrophoretic mobil-
ities and translational diffusion coefficients (Ware
et al., 1983). Diffusing wave spectroscopy is applica-
ble to dispersions in which the scattering is so intense
and multiple scattering is so important that photons
‘diffuse’ through the liquid (Durian et al., 1991). Two
color and 3D PCS are also applicable to strongly
scattering systems. These are cross-correlation tech-
niques that can be utilized to measure the single scat-
tered light in the presence of multiply scattered light
(Overbeck & Sinn, 1999). Another exciting develop-
ment is the extension of the PCS techniques developed
for light sources in or near the visible region to the
X-ray region. This technique, usually referred to as
XPCS, is now under rapid development (Dierker et al.,
1995; Thurn-Albrecht et al., 1999).
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