MSE 160 — Semiconductor synthesis




What is a semiconductor?

Definition: a solid substance that has a conductivity between that of an insulator

and that of most metals, either due to the addition of an impurity or because of
temperature effects

Conductor Insulator

Allows the flow of electricity Does not allow the flow of electricity

Metallic bonding => free electrons Covalent/ionic bonding => no free electrons

Semiconductors can do both!



https://www.youtube.com/watch?v=0YFxg8tqT9k
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Silicon wafer synthesis
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A semiconductor has a narrow bandgap
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Intrinsic semiconductor is formed by pure covalent material

Intrinsic

O

https://www.halbleiter.org/en/fundamentals/doping/

Intrinsic semiconductor has a relatively wide bandgap, E,
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N-type dopants add (donate) electrons to the material
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N-type dopants add (donate) electrons to the material
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P-type dopants add holes (accept electrons) to the material
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P-type dopants add holes (accept electrons) to the material
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Question
Why is Bulk Silicon Black & Shiny?
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To Answer This:

* We need to know that the energy gap of Si is:
Egep = 1.2V
* We also need to know that, for visible light, the
photon energy is in the range:
E,s~1.8—3.1eV
Evis >Egap
* So, all visible light will be absorbed & Silicon appears black

Vis
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To Answer This:

* We need to know that the energy gap of Si is:
Egap = 1.2V
» We also need to know that, for visible light, the
photon energy is in the range:
E,s~1.8-3.1eV
Evis >Egap
* So, all visible light will be absorbed & Silicon appears black

Why is Si shiny?

17

To Answer This:

* We need to know that the energy gap of Si is:
Egep = 1.2V
* We also need to know that, for visible light, the
photon energy is in the range:
E,s~1.8-3.1eV
Evis >Egap
* So, all visible light will be absorbed & Silicon appears black

Vis

Why is Si shiny?
* Photon absorption occurs in Si because there are many

electrons in the conduction band. These electrons are
delocalized and they scatter photons.
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Before we go on, let's consider why bulk (semi)conductors are shiny

Light is an electromagnetic wave

Light’s electric field interacts with conduction
electrons, causing them to oscillate

Creates a perturbation in the distribution of
conduction electrons, “plasmon wave”

Light’'s energy is absorbed via plasmon standing
wave in mostly bulk

Oscillating electron in plasmon re-emits the energy
as photons, creating reflection

Composition of bulk material affects color (think Au,
Ag)

Metal
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Why is GaP Yellow?

To Answer This:

» We need to know that the energy gap of GaP is:

Eqep= 2.26 8V

or v=549 nm.

Incident light

Electron cloud is polarized

So photons with E=h v >2.26 eV (i.e. green, blue, violet) are

absorbed.

Also photons with E =h v < 2.26eV (i.e. yellow, orange, red) are

transmitted.

Also, the sensitivity of the human eye is greater for yellow than for

red, so

GaP Appears Yellow/Orange.
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Colors of Bulk Semiconductors

E,i= 1.8eV —_— 3.1eV
490 e
I B G Y O R

If the Photon Energy is E,s > Eg,y,
Photons will be absorbed
If the Photon Energy is E,;s < Eg,
Photons will transmitted
If the Photon Energy is in the range of E
those with higher energy than E,,
We see the color of the light being transmitted.
If all colors are transmitted the light is White

gap
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What happens during the photon
absorption process?

Photons interact with:
the lattice
defects
valence electrons
conduction electrons

22

will be absorbed.
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Semiconductors can have bandgap in the visible range
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Semiconductors can have bandgap in the visible range
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Increasing
wavelength

(m)
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Energy (eV) on linear scale
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Plasmonic nanoparticle synthesis

28

What is a plasmon? How it’s different than bulk semiconductor

Plasmonic nanoparticle synthesis

14
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Plasmonic nanoparticle properties

Electromagnetic enhancement around the particles, which localize
photon energy to specific locations on their surface

Absorption of light occurs at resonance frequencies; i.e. specific

wavelengths of light excite plasmon waves, or “modes,” more

strongly than others

Resonant frequency is tunable based on particle shape, size,

composition, dielectric environment

Light-matter interactions for plasmonic particles

Incoming oscillatory electromagnetic waves induce
oscillatory charges set into motion inside a
material.

Leads to:

Scattering = Reradiation of light by matter in all
directions

Absorption = thermal losses associated with the
interaction

.
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0.62 ev/5000 cm!
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Plasmons are quasi particles

Quasi particles are described by a collection of
interacting particles, in this case free electrons

Occur on the surface of a conductor nanoparticle,

and are quantized (i.e. have discrete energy)

Consist of collective oscillations of the free electron

gas 4 : - va——y o -

*Have different absorption and re-radiation property
than bulk (semi)conductor due to small size

Plasmon: electric field of light displaces conduction electrons causing coherent oscillation

E-field M}et’il

e cloud
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Plasmon: Coulombic attraction between ionic and electronic cluster

a ¢lectronic cluster
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surface charges o
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time t timet+7T/2
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Result is a standing wave in the plasmonic particle that can be resonant with light

> X0 OO0 X0
ARANZAVAIAVAY

Standing waves have quantized energies: E,, E,, E;, E,

34
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Result is a standing wave in the plasmonic particle
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In contrast to bulk, plasmonic particles appear colored due to surface plasmon resonance

When an oscillatory field (EM, sound, etc.) is
applied to an object capable of facilitating a
standing wave

Certain frequencies (i.e. wavelengths) are amplified
by each new oscillation of the incoming field

The repeated application of energy at this resonant
frequency causes amplification of the standing
wave

E.g., a surface plasmon that resonates at the
frequency of red light appears bright red because it
is amplifying photons with the frequency of red light

Metallic nanoparticle color can vary with size

In nanoparticles, plasmons are confined to a small
surface instead of the bulk

This defines the possible wavelengths (i.e.
frequencies of oscillation) of surface plasmons

Not all wavelengths (frequencies) are possible as
in bulk case

Incident light can be resonant with the available
frequencies, leading to strong scattering of that
color of light

Au nanoparticles with varying plasmon resonance
frequencies

Au nanoparticles with varying plasmon resonance
frequencies
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Visible light wavelength is much larger than nanoparticle size
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Particle size affects absorbance via excitation of plasmon resonance

Increasing particle size redshifts the peak absorption to longer wavelengths.
Surface plasmon resonance frequency is decreasing

At 400 nm, particles absorb across all wavelengths, like bulk conductor.

5-40 nm 40 -100 nm 100 — 400 nm
i . /7 1 \\\\\:
“i / N

Au nanoparticles Wavelength of incident light (nm)
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Three major components comprise a typical synthetic system

—" ——
Metal precursors To Schlenk line

- ,
Organic surfactants t.

Solvents (surfactant can also be the solvent)

-

Temperature
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Metal salt dissolves to metal ion, which is reduced by citrate ion to metal NP

)
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Nucleation and growth mechanism
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Nucleation and growth mechanism

Stage |. Monomer generation
- Rate depends on rxnrate & T C”u
. . max
- increases concentration above
saturation limit, Cs
- nucleation suppressed by
energy barrier of nucleation

Critical limiting supersaturation

Stage Il. Nucleation
- monomers rapidly consumed
causing drop in concentration
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Nucleation and growth mechanism

Stage |. Monomer generation
- Rate depends on rxnrate & T C”U
. . max
- increases concentration above
saturation limit, Cs
- nucleation suppressed by
energy barrier of nucleation

Critical limiting supersaturation

Stage Il. Nucleation
- monomers rapidly consumed
causing drop in concentration

Stage Ill. Growth
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Nucleation and growth mechanism

Stage |. Monomer generation
- Rate depends on rxn rate & T
- increases concentration above
saturation limit, Cs
- nucleation suppressed by
energy barrier of nucleation

Stage Il. Nucleation
- monomers rapidly consumed
causing drop in concentration

Stage Ill. Growth

- Nuclei grow by assimilation
of monomers
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Nucleation

Aspect ratio affects resonance frequency of plasmon

Short-wavelength absorption band is
due to the oscillation of the electrons
perpendicular to the major axis of the
nanorod

Long-wavelength band is caused
by the oscillation along the major axis.

The absorption bands are transverse

and longitudinal surface plasmon
resonances, respectively.
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. 100 nm
Aspect ratio

TEM images of (a) spherical gold nanoparticles with an average diameter of 48 nm
and (b) gold nanorods with a mean aspect ratio of 3.3.
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Shape control is governed by the relative rates of deposition and diffusion (V_dep, V_diff)
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Shape control is governed by the relative rates of deposition and diffusion
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Shape control is governed by the relative rates of deposition and diffusion
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l Thermodynamic l
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Classical equation of plasmon resonance frequency predicts composition effect

Change in the number of
electrons in a material will
change the resonance
frequency.

Nanoparticles of different
elements have different color
despite same geometry.

E.g. Au and Ag
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Doping changes the electronic structure, affecting plasmon resonance and absorbance

n-doped p-doped
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Dopant control through synthesis
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Outline

Semiconductor physics

Plasmonic nanocrystal synthesis

Silicon wafer synthesis
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Modern computers use single crystal Si wafer substrates

Monocrystalline

Modern computers use single crystal Si wafer substrates
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Monocrystalline

Why is Si black?
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Semiconductors can have bandgap in the visible range
Increasing
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Home » Science & Innovation » Energy Sources » Solar

The tremendous growth in the U.S. solar industry is helping to pave the way to a cleaner, more sustainable
energy future. Over the past few years, the cost of a solar energy system has dropped significantly -- helping
to give more American families and business access to affordable, clean energy.

Through a portfolio of R&D efforts, the Energy Department remains committed to leveraging America’s
abundant solar energy resources -- driving research, manufacturing and market solutions to support
widespread expansion of the nation’s solar market.

Solar Energy
Technologies Office

Solar Energy Technologies Office
Homepage
VIEW MORE
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Solar Cell Manufacturing

EARTH USES
16 TW/ PER YEAR

SUN: 20 TW/ PER HOUR é

> » o) 016/2:56

A photovoltaic cell is a p-n junction
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Anthony Fernandez “How a Solar Cell Works”
American Chemical Society, acs.org
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A photovoltaic cell is a p-n junction

Flow of elecrons

Anthony Fernandez “How a Solar Cell Works”
American Chemical Society, acs.org

A photovoltaic cell is a p-n junction
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Anthony Fernandez “How a Solar Cell Works”
American Chemical Society, acs.org
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Monocrystalline Multicrystalline
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Monocrystalline Polycrystalline

Amorphous

Si manufacturing is grounded in materials synthesis

Metallurgical silicon

1% for poly and mono Si

70% of mg-si is for Al alloying for automotive.
30% for other Si for e.g. silicones.

Solar Energy - DelftX - Arno Smets
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Si manufacturing is grounded in materials synthesis

Metallurgical silicon Polycrystalline silicon

Solar Energy - DelftX - Arno Smets

Metallurgical Si is made from guartzite through electroreduction of Si oxides

Solar Energy - DelftX - Arno Smets
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Metallurgical Si is reacted with HCI gas to form tri-chloro-silane, 1 ppm impure
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Polycrystalline Si (1 ppm) is made from metallurgical Si by chemical vapor deposition
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Doping via gas phase borane or phosphane

Solar Energy - DelftX - Arno Smets
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Polycrystalline Si (1 ppm) is made from metallurgical Si by chemical vapor deposition

‘ 2
TUDelft
S

Modern computers use single crystal Si wafer substrates

Monocrystalline
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Si ingot is prepared from poly Si

Poly-silicon Silicon Ingot

https://www.youtube.com/watch?v=80KzS w

Ko0&t=320s
79
Multicrystalline ingot is also produced from melt by directional solidification
Multi-crystalline ingot
"
80
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https://www.youtube.com/watch?v=8QKzS_w_Ko0&t=296s

Multicrystalline ingot is produced from melt

Multi-crystalline ingot

="
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Wafers are created from ingot via sawing to ~150 ym

82
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Wafers are created from Si ribbon

Si manufacturing is grounded in materials synthesis

Solar Energy - DelftX - Arno Smets

42



85

86

Si manufacturing is grounded in materials synthesis

Si manufacturing is grounded in materials synthesis
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Si manufacturing is grounded in materials synthesis
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https://www.youtube.com/watch?v=eVpxn5Cw6YM

