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The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with
Faraday’s investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as
well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal
nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe
recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell’s
equations for light scattering from particles of arbitrary shape in a complex environment. Included is a
description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a
discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local
fields, and other optical properties for nonspherical particles; and a survey of applications to problems of
recent interest involving triangular silver particles and related shapes.

I. Introduction
Gold colloidal nanoparticles are responsible for the brilliant

reds seen in stained glass windows. Silver particles are typically
yellow. These properties have been of interest for centuries, and
scientific research on metal nanoparticles dates at least to
Michael Faraday.1 It was therefore one of the great triumphs of
classical physics when in 1908, Mie presented a solution to
Maxwell’s equations2-4 that describes the extinction spectra
(extinction) scattering+ absorption) of spherical particles of
arbitrary size. Mie’s solution remains of great interest to this
day,5 but the modern generation of metal nanoparticle science,
including applications to medical diagnostics6 and nanooptics,7

has provided new challenges for theory. In this paper, we
highlight recent advances in theoretical research in this area,
emphasizing especially the linear optical properties (extinction,
absorption, Rayleigh scattering, and Raman scattering) of
isolated silver particles of arbitrary shape with sizes up to a
few hundred nanometers.

One of the reasons why Mie’s theory has remained important
for so long is that it is the only simple, exact solution to
Maxwell’s equations that is relevant to particles. In addition,
most of the standard colloidal preparations yield particles that
are approximately spherical, and most of the optical methods
for characterizing nanoparticle spectra probe a large ensemble
of these particles. This leads to results that can be modeled
reasonably well using Mie theory. Recently, however, there has
been growing interest in characterizing the optical properties
of metal nanoparticles that are made using lithographic methods
such as nanosphere lithography,8 e-beam lithography,9 and other
methods,10,11which produce well-defined sizes and nonspherical
shapes without aggregation. In addition, variations on classical
wet chemistry techniques have been developed that give high
yields of nonspherical particles, especially rods12 and triangles.13

The shapes and sizes of these particles are better characterized
than in the past using electron and scanning probe microscopy,

and in some cases, the optical properties of individual nano-
particles have been determined.14 However, there are often
complicating factors in understanding the nanoparticle optical
properties, including the presence of a supporting substrate, a
solvent layer on top of the particles, and particles that are close
enough together that their electromagnetic coupling changes the
spectra. All of these factors motivate the need for theory that
can describe the electrodynamics of nanoparticles of arbitrary
shape and size subject to a complex external dielectric
environment.15-21 Although extinction, absorption, and scatter-
ing are still the primary optical properties of interest, other
spectroscopic techniques are also being brought to bear on these
particles, including surface-enhanced Raman spectroscopy
(SERS),8,22-25 a variety of nonlinear scattering measurements
(hyperRayleigh,26-28 hyperRaman,29 and SHG30), and time-
resolved measurements.31,32 These techniques are sensitive to
the electromagnetic fields at or near the particle surfaces
(whereas extinction, at least for small particles, is sensitive to
the entire volume of the particle), thus providing important
challenges to the development of accurate methods.

This paper begins with a qualitative discussion of the factors
that govern plasmon resonance excitation for spherical particles,
emphasizing the use of simple electrostatic theories and models.
We then give a brief description of modern numerical techniques
that can treat arbitrary particles and environments, and then,
we describe applications of these techniques to problems of
recent interest, particularly to the description of triangular silver
particles using a method known as the discrete dipole ap-
proximation (DDA). Our applications include studies of the
particle size and shape dependence of extinction spectra, the
treatment of substrate and solvent effects for nonspherical
particles, and the calculation of surface electromagnetic fields.
This paper will not consider particle-particle interaction effects,
but we should note that several recent studies related to this
topic33-35 use methods related to those discussed here. We
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should also note that several books and reviews have been
published recently on subjects closely related to those considered
in this paper.5

II. Plasmon Resonances for Small Spherical Particles

A. Dipole Plasmon Resonances.When a small spherical
metallic nanoparticle is irradiated by light, the oscillating electric
field causes the conduction electrons to oscillate coherently. This
is schematically pictured in Figure 1. When the electron cloud
is displaced relative to the nuclei, a restoring force arises from
Coulomb attraction between electrons and nuclei that results in
oscillation of the electron cloud relative to the nuclear frame-
work. The oscillation frequency is determined by four factors:
the density of electrons, the effective electron mass, and the
shape and size of the charge distribution. The collective
oscillation of the electrons is called the dipole plasmon
resonance of the particle (sometimes denoted “dipole particle
plasmon resonance” to distinguish from plasmon excitation that
can occur in bulk metal or metal surfaces). Higher modes of
plasmon excitation can occur, such as the quadrupole mode
where half of the electron cloud moves parallel to the applied
field and half moves antiparallel. For a metal like silver, the
plasmon frequency is also influenced by other electrons such
as those in d-orbitals, and this prevents the plasmon frequency
from being easily calculated using electronic structure calcula-
tions. However, it is not hard to relate the plasmon frequency
to the metal dielectric constant, which is a property that can be
measured as a function of wavelength for bulk metal.

To relate the dipole plasmon frequency of a metal nanoparticle
to the dielectric constant, we consider the interaction of light
with a spherical particle that is much smaller than the wave-
length of light. Under these circumstances, the electric field of
the light can be taken to be constant, and the interaction is
governed by electrostatics rather than electrodynamics. This is
often called the quasistatic approximation, as we use the
wavelength-dependent dielectric constant of the metal particle,
εi, and of the surrounding medium,εo, in what is otherwise an
electrostatic theory.

Let’s denote the electric field of the incident electromagnetic
wave by the vectorEo. We take this constant vector to be in
the x direction so thatEo ) Eox̂, where x̂is a unit vector. To
determine the electromagnetic field surrounding the particle, we
solve LaPlace’s equation (the fundamental equation of electro-
statics),∇2æ ) 0, whereæ is the electric potential and the field
E is related toæ by E ) -∇æ. In developing this solution, we
apply two boundary conditions: (i) thatæ is continuous at the
sphere surface and (ii) that the normal component of the electric
displacementD is also continuous, whereD ) εE.

It is not difficult to show that the general solution to the
LaPlace equation has angular solutions which are just the
spherical harmonics. In addition, the radial solutions are of the

form rl and r-(l +1), wherel is the familiar angular momentum
label (l ) 0, 1, 2, ...) of atomic orbitals. If we restrict our
considerations for now to just thel ) 1 solution and ifEo is in
thex direction, the potential is simplyæ ) A r sinθ cosφ inside
the sphere (r< a) andæ ) (-Eor + B/r2) sinθ cosφ outside
the sphere (r> a), where A and B are constants to be
determined. If these solutions are inserted into the boundary
conditions and the resultingæ is used to determine the field
outside the sphere,Eout, we get

whereR is the sphere polarizability andx̂, ŷ, andẑ are the usual
unit vectors. We note that the first term in eq 1 is the applied
field and the second is the induced dipole field (induced dipole
moment) REo) that results from polarization of the conduction
electron density.

For a sphere with the dielectric constants indicated above,
the LaPlace equation solution shows that the polarizability is

with

Although the dipole field in eq 1 is that for a static dipole, the
more complete Maxwell equation solution shows that this is
actually a radiating dipole, and thus, it contributes to extinction
and Rayleigh scattering by the sphere. This leads to extinction
and scattering efficiencies given by

wherex ) 2πa(εo)1/2/λ. The efficiency is the ratio of the cross-
section to the geometrical cross-sectionπa2. Note that the factor
gd from eq 3 plays the key role in determining the wavelength
dependence of these cross-sections, as the metal dielectric
constantεi is strongly dependent on wavelength.

B. Quadrupole Plasmon Resonances.For larger particles,
higher multipoles, especially the quadrupole term (l ) 2)
become important to the extinction and scattering spectra. Using
the same notation as above and including thel ) 2 term in the
LaPlace equation solution, the resulting field outside the sphere,
Eout, now can be expressed as

and the quadrupole polarizability is

with

Note that the denominator of eq 8 contains the factor 3/2 while

Figure 1. Schematic of plasmon oscillation for a sphere, showing the
displacement of the conduction electron charge cloud relative to the
nuclei.

Eout ) Eox̂ - REo[ x̂

r3
- 3x

r5
(xx̂ + yŷ + zẑ)] (1)

R ) gda
3 (2)

gd )
εi - εo

εi + 2εo
(3)

Qext ) 4xIm(gd) (4)

Qsca) 8
3

x4|gd|2 (5)

Eout ) Eox̂ + ikEo(xx̂ + zẑ) - REo[ x̂

r3
- 3x

r5
(xx̂ + yŷ +

zẑ)] - âEo[xx̂ + zẑ

r5
- 5z

r7
(x2x̂ + y2ŷ + xzẑ)] (6)

â ) gqa
5 (7)

gq )
εi - εo

εi + 3/2εo
(8)
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in eq 3 the corresponding number is 2. These factors arise from
the exponents in the radial solutions to LaPlace’s equation, e.g.,
the factors rl and r-(l +1) that were discussed above. For dipole
excitation, we havel ) 1, and the magnitude of the ratio of
the exponents is (l + 1)/l ) 2, while for quadrupole excitation
(l + 1)/l ) 3/2. Higher partial waves work analogously.

Following the same derivation, we get the following quasi-
static (dipole+ quadrupole) expressions for the extinction and
Rayleigh scattering efficiencies:

C. Extinction for Silver Spheres. We now evaluate the
extinction cross-section using the quasistatic expressions, eqs
4, 5 and 9, 10, as well as the exact (Mie) theory. We take
dielectric constants for silver36 that are plotted in Figure 2a and
the external dielectric constant is assumed to be 1 (i.e., a particle
in a vacuum). The resulting efficiencies for 30 and 60 nm
spheres are plotted in Figure 2b,c, respectively.

The cross-section in Figure 2b shows a sharp peak at 367
nm, with a good match between quasistatic and Mie theory.
This peak is the dipole surface plasmon resonance, and it occurs
when the real part of the denominator in eq 3 vanishes,
corresponding to a metal dielectric constant whose real part is
-2. For particles that are not in a vacuum, the plasmon
resonance condition becomes Reεi/εo ) -2, and because the
real part of the silver dielectric constant decreases with
increasing wavelength (Figure 2a), the plasmon resonance
wavelength forεo > 1 is longer than in a vacuum. The plasmon
resonance wavelength also gets longer if the particle size is
increased above 30 nm. This is due to additional electromagnetic
effects that will be discussed later.

Figure 2c presents thel ) 2 quasistatic (dipole+ quadrupole)
cross-section as well as the full Mie theory result for a radius
60 nm sphere. The quasistatic result also includes a finite
wavelength correction that is described further below (Section
III.B). We see that the dipole plasmon wavelength has shifted
to the red, and there is now a distinct quadrupole resonance
peak at 357 nm. This quadrupole peak occurs when the real
part of the denominator in eq 8 vanishes, corresponding to a
metal dielectric constant whose real part is-3/2. For a sphere
of this size, there are clear differences between the quasistatic
and the Mie theory results; however, the important features are
retained. Although Mie theory is not a very expensive calcula-
tion, the quasistatic expressions are convenient to use when only
qualitative information is needed.

D. Electromagnetic Fields for Spherical Particles.So far,
we have emphasized the calculation of extinction and Rayleigh
scattering cross-sections; however, for certain properties, such
as SERS and hyperRaman scattering (HRS) intensities, it is the
electromagnetic field at or near the particle surfaces that
determines the measured intensity. Thus, ifE(ω) is the local
field for frequencyω, then the SERS intensity is determined
by 〈|E(ω)|2|E(ω′)|2〉 whereω′ is the Stokes-shifted frequency
and the brackets are used to denote an average over the particle
surface. The HRS intensity is similarly (but approximately)
determined by〈|E(ω)|4|E(2ω)|2〉.29 Also, when one makes an
aggregate or array of metal nanoparticles, the interaction
between the particles is determined by the polarization induced
in each particle due to the fieldsE arising from all of the other
particles.

At the dipole (dipole+ quadrupole) level, the field outside
a particle is given by eq 1 (eq 6). These expressions determine
the near-fields at the particle surfaces quite accurately for small
enough particles; however, the field beyond 100 nm from the
center of the particle exhibits radiative contributions that are
not contained in these equations. To describe these, we need to
replace the dipole or quadrupole field by its radiative counter-
part. In the case of the dipole field, this is given by

whereP is the dipole moment. Note that this reduces to the
static field in eq 1 in the limit kf0 where only the term in
square brackets remains. However, at long range, the first term
becomes dominant as it falls off more slowly with r than the
second.

Figure 3 presents contours of the electric field enhancement
|E|2 around 30 and 60 nm radius silver spheres, based on a
Mie theory calculation in which all multipoles are included. Two
planes are chosen for these plots, thexzplane that is formed by
the polarization and k vectors and theyz plane that is

Figure 2. (a) Real and imaginary part of silver dielectric constants as
function of wavelength. Data are from Lynch and Hunter36 but with a
smoothing applied as described in ref 15. (b) Extinction efficiency,
i.e., the ratio of the extinction cross-section to the area of the sphere,
as obtained from quasistatic theory for a silver sphere whose radius is
30 nm. (c) The corresponding efficiency for a 60 nm particle, including
for quadrupole effects, and correcting for finite wavelength effects. In
b and c, the exact Mie theory result is also plotted.

Qext ) 4xIm[gd + x2

12
gq + x2

30
(εi - 1)] (9)

Qsca) 8
3

x4{|gd|2 + x4

240|gq|2 + x4

900|εi - 1|2} (10)

Edipole ) k2eikr r × (r ×P)

r3
+ eikr (1 - ikr )

[r2P - 3r (r ‚ P)]

r5

(11)
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perpendicular to the polarization vector. The wavelength chosen
for the 30 nm particle is the dipole plasmon peak, so since the
dipole field dominates, we see the characteristic p-orbital shape
around the sphere in Figure 3a,c. Note that a small quadupole
component to the field makes the p-orbital lobes slightly
asymmetrical. At long range, the radiative terms in eq 11
become more important, and then, the field has a characteristic
spherical wave appearance.

The wavelength for the 60 nm particle has been chosen to
be that for the peak in the quadrupole resonance, and as a result,
the field contours close to the particle in Figure 3b look like a
dxz-orbital (slightly distorted by a small dipole component that
is also present). In addition, Figure 3d, which is a nodal plane
for the dxz-orbital, only shows the weak dipolar component. Note
that the peak magnitude of the field for the 30 nm particle occurs
at the particle surface, along the polarization direction. This peak
is over 50 times the size of the applied field, while that for the
60 nm particle is over 25 times larger. This is responsible for
the electromagnetic enhancements that are seen in SERS, and
they also lead to greatly enhanced HRS.

Figure 4 plots the surface-averaged E-field enhancement for
the 30 and 60 nm spheres as a function of wavelength, along
with the extinction efficiency. In addition, the figure includes
the E-field enhancement associated with two points on the
sphere: (a) along the polarization direction (point 1) and (b)
rotated 45 degrees away from the polarization direction (point
2). The E-field enhancement associated with specific points on
the surface would be appropriate for understanding a single
molecule SERS experiment, should this be possible for a
spherical particle. For both sphere sizes, the field enhancement
due to the dipole resonance peaks to the red of the extinction.
Quasistatic theory predicts that both peaks should occur at the
same wavelength; however, the finite wavelength corrections
to the quasistatic result lead to depolarization of the plasmon
excitation on the blue side of the extinction peak, resulting in
a smaller average field and a red-shifted peak.

For the smaller sphere (top panel of Figure 4), the E-field
enhancement associated with point 1 is about three times larger

than the surface-averaged value, and the lineshapes are the same.
Point 2 shows a smaller enhancement, and it peaks toward the
blue, indicating the influence of a weak quadrupole resonance.
For the larger sphere (bottom), the maximum for point 1 is about
3.5 times greater than the surface average for the dipole peak.
For point 2, we see a maximum at the quadrupole resonance
wavelength, and the enhancement is about three times greater
than for the quadrupole peak in the surface-averaged result.
Thus, for the larger sphere, it is possible for the largest SERS
enhancement to be at a location on the surface that is not along
the polarization direction.

III. Electrodynamics Methods for Nonspherical Particles
A. Exact Analytical Theories: Spheroids.Mie theory is

the exact analytical solution of Maxwell’s equations for a sphere.
Unfortunately, the only other compact object for which exact
solutions are known is a spheroid, and here, the solution is
sufficiently complex that little use has been made of the
analytical expressions. However, Voshchinnikov and Farafonov
(VF)37 have developed a numerical implementation of the
extinction and scattering cross-sections based on this theory,
providing a useful tool for understanding a common example
of nonspherical nanoparticles.

In Figure 5, we present extinction cross-sections based on
the VF code for oblate spheroids having a ratio of major to
minor axes,r, ranging fromr ) 1 (a sphere) tor ) 10 (highly
oblate). The dimensions of each spheroid have been chosen so
that the total volume of each spheroid is equal to that for a 80
nm radius sphere. The field polarization has been chosen to be
along the major axis of the spheroid.

Figure 5 shows two important effects. First, as the ratio
increases, the dipole plasmon resonance gradually red shifts.

Figure 3. E-field contours for radius 30 and 60 nm Ag spheres in a
vacuum. Two cross-sections are depicted for each sphere. (a, b) The
plane containing the propagation and polarization axes and (c, d) the
plane perpendicular to the propagation axis. The 30 nm sphere refers
to 369 nm light, the main extinction peak for this size, whereas the
larger sphere is for 358 nm light, the quadrupole peak for this size.
Labeled points 1 and 2 illustrate locations for Figure 4.

Figure 4. Comparison of extinction efficiency, surface-averaged E-field
enhancement, and E-field enhancement for specific points for radius
30 nm (top) and 60 nm (bottom) Ag spheres in a vacuum. The two
points chosen are point 1, along the polarization direction, and point
2, at a 45° angle relative to the polarization direction and in thexz
plane.
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This shows that the plasmon resonance depends strongly on
particle shape, shifting to the red as the particle becomes more
oblate. There is a second resonance (not plotted) that arises when
the polarization is chosen to be along the minor axis, which
blue shifts as the particle becomes more oblate. If the spheroid
is prolate instead of oblate, there are also two distinct resonances,
with the red-shifting one still being associated with the major
axis. If the particle is an ellipsoid, with three distinct axes, there
are three plasmon resonances.

The second effect seen in Figure 5 is that the quadrupole
resonance peak, which for the case of a sphere is larger than
the dipole peak, is much less important asr is increased. This
shows that the quadrupole mode can be “quenched” by particle
asymmetry. A consequence of this is that quasistatic theory,
which only describes dipole plasmon resonances, is very useful
for highly spheroidal large particles, even when this theory fails
for spheres.

B. Modified Long Wavelength Approximation (MLWA):
Spheroids. The quasistatic approximation was introduced in
Section II.A, where we solved the electrostatics associated with
light interacting with the particle and simply used the wavelength-
dependent dielectric constant in the result. This treatment can
easily be generalized to treat spheroids, as described in several
papers,38,39and it leads to relatively simple expressions for cross-
sections and field enhancements. In addition, it can be used for
other particle shapes. However, to develop an accurate theory,
it is necessary to correct the quasistatic result for finite
wavelength effects, leading to what is sometimes called the
MLWA. 40

In the quasistatic treatment, one finds that the induced dipole
momentP in an oblate spheroid resulting from the imposition
of a field E is given by

whereR is the spheroid polarizability.

and ø and êo are parameters that depend on the geometry of
the spheroid:

with a andb being the minor and major axes, respectively.
Note that the polarizability contains the denominator (εi +

øεo). This is the same form as we discussed earlier for a sphere
(eq 3) except that 2 is replaced byø. It is easy to show thatø
increases with increasingb/a, leading to a plasmon resonance
that red shifts as the spheroid becomes more oblate. Of course,
this is just the result we’ve already seen in Figure 5.

The electrodynamic corrections associated with MLWA are
now introduced by rewriting eq 12 as41

where the radiative correction fieldErad is

The first term in eq 17 describes radiative damping. It arises
from spontaneous emission of radiation by the induced dipole.
This emission grows rapidly with particle size, eventually
reducing the size of the induced dipole and increasing the
plasmon linewidth. The second term comes from depolarization
of the radiation across the particle surface due to the finite ratio
of particle size to wavelength. This dynamic depolarization term
causes red shifting of the plasmon resonance as the particle size
is increased.

The net effect of both of these terms is to produce a modified
expression for the dipole momentP in which eq 12 is multiplied
by the expression

Conversion of the dipole moment into an extinction cross-section
is similar to the sphere derivation (eq 4) given above, but now,
the factorF must be carried through. Note that the radiative
damping contribution toF is proportional to the product of the
polarizability (proportional to particle volume) times k3 () (2π/
λ)3). The dynamic depolarization term is proportional toR/b
(proportional to particle area) times k2. Clearly, both terms will
be of order unity when the particle radius becomes comparable
to λ/2π, which for λ ) 600 nm implies thatb ) 100 nm.

Figure 6 presents a test of the MLWA for oblate spheroids
whose equivalent volume is the same as for a sphere of radius
30 nm. The ratio of major to minor axis is chosen to vary from
1 to 10, and both MLWA and exact cross-sections are included.
The results show excellent agreement between exact and MLWA
for all shapes considered, which indicates that the MLWA gives
an accurate description of the full electrodynamics. Again, we
see the red shifting of the plasmon resonance as the spheroid
becomes more oblate. Quadrupole resonance effects are not
important for these 30 nm spheroids, and MLWA would not
describe them if they were. However, even for large particles
such as those pictured in Figure 5, the MLWA provides an
accurate description of everything except the quadrupole
contribution.

C. DDA Method. For particles that do not allow solving
Maxwell’s equations (or LaPlace’s equation) analytically, it is
necessary to introduce numerical methods. Over the last 15
years, a number of numerical methods have been introduced,

Figure 5. Exact electrodynamic calculation of the extinction spectra
of oblate spheroids, all with the same equivalent volume, corresponding
to a sphere radius of 80 nm. The major to minor axis ratio,r, is from
left to right: 10, 5, 3.33, 2.5, 2, 1.67, 1.43, 1.25, 1.11, and 1. In this
figure the extinction is normalized to the area of a circle with radius
equal to the semi-major axis.

P) RE (12)

R )
εi - εo

εi + øεo

b3(1 + ø)
3

êo
2 + 1

êo
2

(13)

ø ) -1 - 2[êo
2 -

êo(êo
2 + 1)

2
cos-1(êo

2 - 1

êo
2 + 1)]-1

(14)

êo ) (b2/a2 - 1)-1/2 (15)

P ) R[E + Erad] (16)

Erad ) 2
3

ik3P + k2

b
P (17)

F ) (1 - 2
3

ik3R - k2

b
R)-1

(18)
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including the DDA,40,42,43the multiple mutipole method,44 and
the finite difference time domain method.45,46Each of these has
particular advantages and disadvantages, but for isolated nano-
particles of arbitrary shape and a complex surrounding environ-
ment, a particularly powerful method is the DDA.15-20 In the
following paragraphs, we briefly describe this method.

The DDA method is a numerical method in which the object
of interest is represented as a cubic lattice of N polarizable
points.42 There is no restriction as to which of the cubic lattice
sites are occupied, which means that DDA can represent an
object or multiple objects of arbitrary shape and composition.
We take theith element to have a dipole polarizabilityRi (and
no higher multipole polarizabilities), with its center at a position
denotedr i. The polarization induced in each element as a result
of interaction with a local electric fieldEloc is (omitting the
frequency factors eiωt)

Eloc, for isolated particles, is the sum of an incident field and a
contribution from all other dipoles in the particle

Eo and k are the amplitude and wave vector of the incident
wave, respectively, and the interaction matrixA has the
following form (for j * i)

where k) ω/c. Note that the metal dielectric constant and that
of the surroundings enter into the calculation through a factor
εi/εo, which is contained in the polarizabilitiesRi. In addition,
the wavevector k should be multiplied by (εo)1/2 if the particle
is not in vacuum. The explicit formula forRi was developed by
Draine and Goodman43 such that the dipole lattice for an infinite
solid exactly reproduces the continuum dielectric response of

that solid to electromagnetic radiation. This leads to a theory
that is not exact, but in practice, it gives extinction spectra for
metal particles that are within 10% of the exact results, and
this agreement appears to be independent of the size, shape, or
composition of the particle.

Substituting eqs 20 and 21 into eq 19 and rearranging terms
in the equation, we generate an equation of the form

whereA′ is a matrix, which is built out of the matrixA from
eq 20. For a system with a total of N elements,E andP in eq
22 are 3N-dimensional vectors, andA′ is a 3N× 3N matrix.
By solving these 3N complex linear equations, the polarization
vectorP is obtained, and with this, the extinction cross-sections
and other optical properties may be calculated. In actual practice,
there are significant advantages associated with performing the
sum over dipole fields in eq 20 using fast Fourier transform
methods and solving eq 22 by complex conjugate gradient
techniques. This is the implementation developed in the work
of Draine and Flatau,43 and it is what we have used in the present
studies. Further details of the method are described in ref 40.

As an example of the use of DDA calculations, in Figure 7,
we present electric field contours for a 5:1 oblate spheroidal
silver particle (whose volume is equivalent to a sphere of radius
80 nm) at a wavelength, 775 nm, that corresponds to the
plasmon maximum. In earlier work, we demonstrated that this
calculation gives cross-sections in nearly quantitative agreement
with MLWA results.20 The gridding associated with the DDA
calculation is evident in the somewhat distorted appearance of
the particle surfaces, but we see that except for the layer closest
to the surface, the fields are smooth and well-converged. The
plot shows that the field contours are much more intense near
the particle surfaces than was the case for the sphere contours
presented in Figure 3, with the peak field being 140 times the
applied field. This is why SERS intensities are much higher
for more oblate (or prolate) particles. Some of this arises because
the fields near a curved surface are intrinsically higher for higher
curvatures. (This is sometimes called the lightning rod effect.)
In addition, the red-shifted plasmon (as compared to a sphere)
can have a narrower plasmon resonance due to decreased
importance of interband transitions (an effect that is important
to the imaginary part of the metal dielectric constant).

Figure 6. Extinction spectra of oblate silver spheroids, all with the
same equivalent volume corresponding to a sphere ofR ) 30 nm. The
ratio of major to minor axes is, from left to right,r ) 1, 3.33, 5, and
10. For each ratio, results are presented using MLWA and the exact
solution of Maxwell equations, as indicated in the legend.

Pi ) Ri ‚ Eloc(r i) (19)

Eloc(r i) ) Eloc,i ) Einc,i + Edipole,i )

Eo exp(ik ‚ r i) - ∑
j*i

A i,j ‚ Pj (20)

A ij ‚ Pj )
exp(ikr ij)

r ij
3

×

{k2r ij × (r ij ×Pj) +
(1 - ikr ij)

r ij
2

[r ij
2 Pj - 3r ij (r ij ‚ Pj)]} (21)

Figure 7. E-field enhancement contours external to a 5:1 ellipsoid in
a vacuum based on DDA calculations at 775 nm. The ellipsoid’s volume
is equivalent to a radius 80 nm sphere, and the fields inside the particle
are set to zero for clarity. Planes plotted pass through the center of the
sphere, with (a) plane chosen perpendicular to thek direction, withE
along the abscissa and (b) plane chosen to containk and E, with k
being the abscissa.

A′ ‚ P ) E (22)
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IV. Applications

In this section, we present applications in which the DDA
method has been used to describe nonspherical silver nanopar-
ticles. In part A, we describe studies of triangular nanoprisms
that have recently been made using wet chemistry methods,
while in part B, we consider lithographically fabricated truncated
tetrahedrons in complex dielectric environments. Both types of
particles are being used for chemical and biological sensing
applications,6,8,18,19but they may find many other applications
due to their highly controllable optical properties.

A. Triangular Prisms in Solution. An important recent
discovery13 in the field of colloid chemistry is that it is possible
to use wet chemistry methods to make triangular prisms of silver
that have atomically flat surfaces and do not aggregate.
However, the distribution of sizes and shapes generated so far
is relatively broad, with many of the particles having missing
tips. To model these spectra, we have done DDA calculations
for both perfect triangular prisms and for “snipped” prisms, in
which the ends of all three tips have been removed. All
calculations refer to water as the external dielectric medium.
Figure 8 presents the resulting spectra, with the insert to Figure
8 showing the geometry of a snipped prism. The perfect triangles
are 100 nm in edge length and 16 nm thick, which is typical of
what has been produced in experiment. The DDA calculations
use a cubic grid that is 2 nm in each dimension. This leads to
extinction spectra that are converged with respect to grid size.
All of the results in Figure 8 refer to an average over polarization
directions. We have compared full angular averaging with
averaging over the three Cartesian directions, and we find that
the latter procedure is sufficient to mimic a fully averaged result.
Later, we will examine results for specific polarizations.

The results in Figure 8 show spectra, which for the most part
consist of three peaks, a long wavelength peak at 770 nm (here
referring to the perfect triangle), a weaker peak at 460 nm, and
a small but sharp peak at 335 nm. In addition, we see that the
red-most peak is very sensitive to snipping, with the 20 nm
snipped prism giving a peak that is blue-shifted by 100 nm as
compared to the perfect prism. The other peaks are more weakly
sensitive to snipping.

To further understand these spectra, in Figure 9a, we present
three calculated spectra for the 10 nm snipped triangle, one for
polarization along each principle axis of the prism. All three
calculated spectra have two peaks, and the two polarizations

along the long axes of the prism (side and perpendicular
bisector) closely resemble each other. Thus, the polarization-
resolved spectra show peaks at 460 and 670 nm (for in-plane
polarization) and 335 and 430 nm (for out-of-plane polarization).
In Figure 9b, we show the comparison of orientation-averaged
spectra with experiment. The agreement is excellent, confirming
that the 10 nm snipped structure (shown in the inset) provides
a good representation of the average over particle shapes and
sizes. Note that although there are four peaks in the polarization-
resolved spectra, the peak at 430 has washed out of the
polarization-averaged spectra.

To assign the resonances in Figure 9, plots of the induced
polarization were made for each of the resonance wavelengths,
for an unsnipped prism. (The results are analogous for a snipped
prism.) Figure 10 presents the plots for the 460 and 770 nm
peaks. For the 770 nm result, the response appears analogous
to the dipole resonance of spheres (such as in Figure 3), with
the largest induced polarization and the largest field (|E|2 over
500 times the applied field) occurring at the particle tips. When
excited at 460 nm, the field pattern is much different, with only
about half the particle showing significant polarization and very
little polarization at the tips. Although hard to see in the figure,
dipoles at the rightmost tip point opposite to the incident
polarization direction. The pattern closely resembles a quadru-
pole pattern from electrostatics. From this analysis, we assign
the resonances at 770 and 460 nm as dipole and quadrupole
plasmon resonances associated with in-plane polarization.

Polarization plots for short axis polarization are more difficult
to visualize and interpret. However, it is possible to say that at
430 nm most of the polarization is parallel to the symmetry

Figure 8. Orientation-averaged extinction efficiency for trigonal prisms
based on a 100 nm edge dimension with snips of 0, 10, and 20 nm.
The inset shows the shape of a snipped prism. The prism thickness is
16 nm. Results are based on DDA calculations with a 2 nmcubic grid.
For snip) 0, 68 704 dipoles are used in the calculation.

Figure 9. UV-vis spectra of trigonal Ag prisms with side length)
100 nm, snip) 10 nm, and thickness) 16 nm. (a) Calculated spectra
for polarization along the three primary symmetry axes. (b) Average
over orientation, along with measured spectrum.
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axis, as would be the case for a dipole plasmon resonance, while
at 335 nm, roughly half the polarization points up and half down,
as with a quadrupole resonance. Thus, we find that both in-
plane and out-of-plane excitation lead to dipole and quadrupole
resonances. All of these features are seen in the experiments
except the out-of-plane dipole resonance at 430. Theory indicates
that this should be a broad resonance, so it is not surprising
that this is not resolved in the measurements. A surprising
feature of our results is that the two quadrupole resonances are
intense for triangularly shaped particles but not for spheroidal
ones of roughly equivalent dimensions.

Figure 11 shows the E-field enhancement contours for a prism
with the same orientation as in Figure 10. Here, we see that the
maximum enhancement for the dipole resonance is at the tips,
while for the quadrupole resonance the significant regions of
enhancement occur at the sides. Another important difference,
especially at the particle tips, is that the field decays away from
the surface faster for the quadrupole than for the dipole.

B. Truncated Tetrahedrons: Effect of Dielectric Environ-
ment. B.1. SolVent Effects.The effect of the surrounding
solvent on the plasmon resonance wavelength of spherical nano-
particles is easily understood using the plasmon resonance
condition Re(εi) + 2εo ) 0.

Using the Drude model for the metal dielectric constant,εi )
1 - ωp,b

2 /ω(ω + iγ) whereωp,b is the bulk plasmon frequency
andγ is its width, then it is not difficult to show that as long as
ωp,b . γ, the particle plasmon wavelengthλp varies with solvent
index of refractionno ) (εo)1/2 as

whereλp,b is the bulk plasmon wavelength and we have assumed
thatno ≈ 1. Equation 23 is only a qualitative theory, but it does
reveal that the plasmon wavelength varies roughly linearly with
the index of refraction of the surrounding solvent and with a
proportionality constant that depends on the plasmon wavelength
31/2 λp,b of the particle in a vacuum.

Although eq 23 was derived for spherical particles, a similar
proportionality exists for nonspherical particles. Figure 12 shows
an example of this for silver-truncated tetrahedrons (whose
structure is shown in the inset to the figure). These particles
are fabricated by a lithographic technique, so they are produced
on a flat surface; however, it is possible to measure plasmon
resonance wavelengths using a combination of solvents and
surfaces that are indexed matched, in which case the particles
may be treated as if they were in a homogeneous solvent. The
figure shows the results of DDA calculations, along with
experimental results,18 and we see that both theory and experi-
ment show the linear dependence of plasmon wavelength on
index of refraction. Unfortunately, theory and experiment are
not in agreement with respect to the slopes of the lines. This is
likely due to the presence of an oxide coating on the silver
particles, which is unavoidably produced during fabrication, and
there may also be chemical interactions between the metal and
its surroundings that are left out in the simple dielectric
environment model that we have considered. These effects
could, in principle, be described by adding a layer around the
particle to the DDA calculation; however, the dielectric proper-
ties of this layer would need to be determined in order to
produce a quantitative theory.

B.2. Substrate Effects.Because nanoparticles are often
produced on surfaces, it is important to understand how their
interaction with the substrate influences their plasmon resonance
properties. This adds a new level of complexity to the
electromagnetic modeling due to the asymmetric environment;
however, we have found that the DDA method provides a
powerful technique, if carefully used, to describe this situa-
tion.

To understand the effect of interaction of a particle with a
substrate, we have done DDA calculations that model a silver
sphere sinking into a substrate. Figure 13 shows the results for
a 10 nm sphere engulfed by a mica substrate, including the cases
where no mica is present (i.e., a sphere surrounded by vacuum)

Figure 10. Polarization vectors for dipole (left) and quadrupole (right)
resonances at 770 and 460 nm, respectively, for Ag trigonal prisms
described in Figure 9.

Figure 11. E-field enhancement contours external to the Ag trigonal
prism, for a plane that is perpendicular to the trigonal axis and that
passes midway through the prism. The light is chosen to havek along
the trigonal axis andE along the abscissa. Left: 770 nm. Right: 460
nm. Side length) 100 nm, and thickness) 16 nm.

λp ) λp,b(2n0
2 + 1)1/2 ≈ 31/2 λp,b{1 + 1

3
[n0 - 1]} (23)

Figure 12. DDA studies of the effect of external dielectric constant
on plasmon resonance wavelength for truncated tetrahedral silver
particles (structure shown in inset). The experimental data18 refer to
index-matched substrate and solvent, so that the particle can be modeled
as having a uniform external dielectric constant.
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and when the Ag core is completely enclosed. We see that the
LSPR wavelength shifts dramatically to the red as the sphere
goes from free to being partially embedded (25% of the sphere
area is exposed). As the sphere becomes increasingly more
embedded (area exposed varies from 25 to 100%), the shift to
the red is much slower and is approximatelly linear with exposed
area.

Figure 14a demonstrates how the influence of the substrate
can be essential in obtaining the correct resonance wavelength
from a DDA calculation.17 Here, a truncated tetrahedron with
and without an attached slab of mica substrate (see inset) is
compared to the measured spectrum. In preparation for this
study, a survey of the effect of different slab dimensions was
made, and it was found that circular cylindrical slabs with
diameters twice the particle width and lengths equal to the
particle heights are ideal. Larger slabs do not significantly shift
the spectra but require more computational effort. The presence
of the substrate slab shifts the extinction peak by about 100 nm
to the red, resulting in a peak value that closely matches the
measured value. Such an excellent match between measurement
and model is not typical, but it is an encouraging example of
how attention to details of the experiment leads to a more
accurate prediction.

A more detailed study of the effect of substrate index of
refraction on the plasmon wavelength associated with truncated
tetrahedral particles is presented in Figure 14b, along with
comparison with experiment.18 The figure shows that the
substrate-induced spectral shift depends linearly on the refractive
index of the substrate slab, with a slope, relative to the slope of
Figure 12, that reflects the “exposed area” concept that we
discussed in the context of Figure 13. What we mean by this is
that the area of the particle exposed to the surface is about one-
third of the total particle area, so we expect (and we find) that
the slope associated with the substrate is about one-third that
associated with the index-matched experiment. This behavior
of the relative slopes matches experiment quite well, but the
magnitude of both slopes is about twice what is measured in
the experiments. We assume that the error in slopes reflects
the same issues as were considered in the discussion of Figure
12.

V. Conclusion

The theory and examples presented here indicate that it is
now possible to describe many optical properties of silver (and
other) metal nanoparticles having complex shapes and which
are in complex dielectric environments. The comparisons with
experiment show that classical electromagnetic theory works
well provided that we have good measurements of particle
structure and provided that the complex dielectric environment
is properly characterized and modeled. The particles we have
considered here are large enough that size dependence of the
dielectric constant has not been an issue; however, for smaller
particles, this will be an important factor.

This work has emphasized comparisons with experiment for
extinction spectra. The calculation of other properties, such as
SERS and HRS intensities, provides new challenges for non-
spherical particles that are an important component of our

Figure 13. DDA results for a sinking sphere model to investigate shift
due to substrate. Peak wavelength vs surface area (in nm2) of radius
10 nm Ag sphere in contact with a partial 10 nm thick mica shell. The
metal core is progressively embedded into a partial sphere of mica at
0, 5, 10, and 15 nm from the edge along the core’s diameter. A sudden
shift occurs between the bare Ag core and shallow immersion, after
which the shift is nearly linear with contact area.

Figure 14. (a) DDA results for the effect of substrate on extinction of
a truncated tetrahedron. Comparison with experiment17 is also included.
The particle (see inset) is characterized by a perpendicular bisector)
93 nm, particle height) 28 nm. The DDA calculations include results
both with and without a mica slab, where the slab is a cylinder having
base diameter) 153 nm and base height) 30 nm. A total of 63 126
dipoles were used to represent the particle+ slab, and the results are
averaged over the two polarizations that are perpendicular to the three-
fold axis. Fringes in the experimental data are due to diffraction with
the layered mica substrate. (b) Wavelength associated with plasmon
peak associated for a truncated tetrahedral particle as a function of index
of refraction of substrate, including comparison of theory and experi-
ment.18 In this case, the truncated tetrahedron has a perpendicular
bisector of 100 nm and a height of 25 nm. The experimental results
involve measurements with the following substrates: fused silica, glass,
boro-silicate glass, mica, and SF-10 (a specialty, high-index glass). The
DDA calculations are based on the same slab model as in (a).
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current research. We have emphasized in this paper the optical
properties of particles that are sufficiently dispersed that they
may be treated as being isolated. However, in most practical
situations, particle interactions are important, and sometimes
they are dominant. Theories for treating such interactions have
been described elsewhere;33,34 however, there is still much to
learn about particle interactions.

The survey presented here has emphasized the importance
of simple analytical theories for simple shapes, i.e., the MLWA
for spheres and spheroids, in providing qualitative insight about
the variation of plasmon resonance properties with particle size,
shape, and environment. Such quasistatic theories have histori-
cally considered only dipole plasmon resonance effects, but here,
we have demonstrated that they can be generalized to quadrupole
resonances. Although quadrupole resonances are mostly known
for spherical and nearly spherical particles, we have demon-
strated that they are surprisingly important for triangular prisms.

The workhorse of our studies of nonspherical/nonspheroidal
particles is the DDA method. Although other grid-based methods
exist, the DDA casts itself very naturally to the treatment of
complex particles in heterogeneous environments and to the
determination of far-field properties such as extinction and
scattering spectra. One of the advantages of the DDA method
is that every problem can be approached in the same way, i.e.,
by defining grids that represent the complex environment and
that are sufficiently fine so that converged results are produced.
Two weaknesses of the DDA approach are (i) that the total
volume of material that can be described is limited by available
computer resources to dimensions of a few hundred nanometers
and (ii) that the electric fields close to particle surfaces are
inaccurate.
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