MSE 160 — Polymer characterization

Labs this week (details here: bowmanlab.eng.uci.edu/class)

Lab Calendar

Monday Tuesday Wednesday Thursday
Week1 | NolLab No Lab No Lab No Lab
Lecture topic: No Lecture
1/6 - How to write a lab
1/9 report
Week2 | NoLab No Lab QUIZ ON POLYMER LAB | QUIZ ON POLYMER LAB
MANUAL MANUAL
1/13 -
1/16 Polymers Polymers
Crosslinking - Crosslinking
- DsC - DsC
Hot-stage OM - Hot-stage OM
Lecture topic: No Lecture
| | Polymer synthesis
Week3 | NoLab No Lab QUIZ ON POLYMER LAB | QUIZ ON POLYMER LAB
MANUAL MANUAL
1/20-
1/23 Polymers Polymers
Crosslinking - Crosslinking
- DsC - DsC
Hot-stage OM - Hot-stage OM
Lecture topic: No Lecture
Polymer
characterization
Week 4 | Lab report writing Lab report writing M/W Groups polymer T/Th Groups polymer
waorkshop (optional) workshop (optional) lab reports due by 1 PM | lab reports due by 1 PM
1/27 - PST PST
1/30
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No Lab

No Lab

P Jpra—

1/21/2020

Ty ppra—

M/W Group 1 - 14 students (section 19432)
M/W Group 2 - 14 students (section 19433)
T/Th Group 1 - 7 students (half of section 19431)
T/Th Group 2 - 7 students (half of section 19431)

Tu/Th
Group 1 =last name A—-L

Group 2 = last name M -2

BowmanLab



Lecture outline

Outline

+ Characterization
« Differential scanning calorimetry
+ Polarized light microscopy
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Differential scanning calorimetry (DSC)

Calorimetry measures thermal properties of
materials

Connects temperature and specific physical
properties of substances

Only method for direct determination of
enthalpy associated with a process
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What are the dependent and independent variables in DSC?
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DSC measures heat flow vs. temperature

Heat flow

Temperature
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Differential scanning calorimetry (DSC)

Exo- _ Positive heat flow out
thermic of the sample
Heat flow

Endo- Negative heat flow into
the sample

Temperature
83
Differential scanning calorimetry (DSC)
Exo-
thermic
Tg

Heat flow X

Endo-

Temperature
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Above Tg the amorphous phase softens, but the material is still solid

Specific Volume

Temperature Tgl ng
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Differential scanning calorimetry (DSC)

Exo-
thermic

Heat flow

Endo-

Temperature

86

BowmanLab
EngrMSE 160, 2020 Winter ~ 1/21/2020 UCIRVINE



Magnitude of heat flow at Tg indicates a change in the amount of amorphous material

Exo-
thermic

Heat flow

Endo-

Temperature
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Differential scanning calorimetry (DSC)

How else can Tg change?

Exo-
thermic

Tg
Heat flow

Endo-

Temperature
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Differential scanning calorimetry (DSC)

Exo-
thermic
Tg Tg'
Heat flow )
Endo-
Temperature
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Shift of Tg indicates a change in the mobility of molecules

Exo-
thermic
Tg Ty’
Heat flow .
Endo-
Temperature
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Exotherm or endotherm DSC signals
result from phase change or chemical reaction
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Exotherm or endotherm DSC signals
result from phase change or chemical reaction

Exo-
thermic

Heat flow

Endo-

Temperature
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Crystallization releases heat
as a lower-energy, higher-order state is formed

Exo- o
thermic Crystallization
exotherm
Heat flow
Endo-

Temperature
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Molecular ordering releases excess free energy
associated with disorder

Exo- o
thermic Crystallization
exotherm
Heat flow @
Endo-

Temperature
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Molecular ordering releases excess free energy
associated with disorder

Exo- o
thermic Crystallization
exotherm
Heat flow @ % "”W
Endo-
Temperature
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Exo- o
thermic Crystallization
exotherm
Reverse process of crystallization is ?
Endo-
Temperature
96

BowmanLab
EngrMSE 160, 2020 Winter ~ 1/21/2020 UCIRVINE



Differential scanning calorimetry (DSC)

Reverse process of crystallization is ?

Exo-

thermic Crystallization

exotherm

Heat flow @ %
Endo- \/‘

Temperature
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Disordering of the molecules requires excess free energy

Exo- o
thermic Crystallization
exotherm
Heat flow ?ié );> § “”W @
Melting
endotherm
Endo- \/‘

Temperature
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DSC application in battery research
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pubs.acs.org/JACS

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/
Polymer Sandwich Electrolyte
. Weidong Zhou,T Shaofei Wang,Jr Yutao Li,T Sen Xin, Arumugam Manthiram, and John B. Goodenough*

Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712,
United States
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Figure S2. TGA and DSC curves of the polymer CPMEA.
§
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swing freely, facilitating the ionic transfer of Li*. Thermogravi-
metric analysis showed that the CPMEA did not exhibit an
obvious weight loss until 270 °C, and the differential scanning
calorimetry curve did not give an obvious endothermal melting|
process until 270 °C (Figure S2), indicating that the CPMEA-

based membranes should have sufficient thermal stability to B
remain solid in a lithium metal battel;)f. The polymer—electrolyte P g
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Exotherm can result from chemical reaction or “curing”
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Exotherm can result from chemical reaction or “curing”

Exo-
thermic

Heat flow

Endo-
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Temperature
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Bond formation between molecular segments forms a tighter network

Exo-
thermic

Heat flow

Endo-
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Chemical reaction or cure

Temperature

At higher temperature there is no endotherm because no melting

Exo-
thermic

Heat flow

Endo-
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Temperature

1/21/2020

BowmanLab
UCIRVINE



Curing shifts Tg to higher values
by lowering molecular mobility

Exo-
thermic
Tg Tg'
Heat flow )
Endo-
Temperature
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Area under an exotherm is the energy released during a reaction or phase change
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Area under an exotherm is the energy released during a reaction or phase change

Exo- Exotherm
thermic
Heat flow
Endotherm
Endo- \/—
Temperature
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Area above an endotherm is the energy required for a phase change
110
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Area above an endotherm is the energy required for a phase change

Exo-
thermic Exotherm
Heat flow
Endotherm
Endo- T‘
Temperature
111
Semi-crystalline polymers can have multiple DSC signals
112
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Semi-crystalline polymers can have multiple DSC signals

Exo-
thermic
Endotherms
Heat flow
Endo-
Temperature
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Two different crystal morphologies yield two melting endotherms

Exo-
thermic
Endotherms
Heat flow
Endo-
Temperature
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Exo-
thermic
Heat flow
Endo-
115
Exo-
thermic
Heat flow
Endo-
116

Row-nucleated structure is higher energy, so
usually melts at lower temperature

Endotherms

Temperature

Spherulitic structure is highly ordered and
semi-crystalline, so melt at higher temperature

Endotherms

s B

Temperature
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(b)

117

Copolymer or blend of two semi-crystalline
polymers would show two DSC endotherms

Two polymers can combine into one, giving new
DSC endotherm
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Endotherm signal on first heating

Exo-
thermic
Endotherm
Heat flow

Endo-

Temperature
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Exo-
thermic If volatilization: No change in

signal on cooling

Heat flow )

Endo-

Temperature

120

BowmanLab
EngrMSE 160, 2020 Winter ~ 1/21/2020 UCIRVINE



Endotherm signal on first heating

Exo-
thermic
Endotherm
Heat flow
Endo-

Temperature
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If melting: crystallization
exotherm signal on cooling

Exo-
thermic -J\
Heat flow )

Endo-

Temperature
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MSE 160 - Polymer synthesis and characterlzatlon
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Polarized Light Microscope Optical Pathways and Components
Intermediate
Image
Plane
Wavefront
Tube Lens -8 Azimuths
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Figure 9 Mineral Fiber
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There are many microscopes at UCI

JEOL JEM-ARM300F Grand ARM
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aberration-corrected
electron microscope
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Visible light is the most common microscopy

Light Microscopy

g_

- ——

Light Source
(Lamp)

Condenser
Lens

E _____ Specimen
(

Image Viewed
Directly
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Tissue Sections)
Objective
Lens

Lenses (de)magnify beams.
What lenses did you bring to this lecture?

Eyepiece
Lens

Electron microscopy is analogous to visible-light microscopy,

but with higher resolution

Light Microscopy

[!_

L —

—_————

Image Viewed
Directly
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Electron Microscopy

Light Source
(Lamp) -
Condenser @ Condenser
Lens Lens

Specimen  ___ < >)

(Tissue Sections)

Objective @
Lens

Electron Source

-—

__ Eyepiece 7Profect|on
Lens = Lens

3-Dimensional
Specimen

Image Viewed on
Fluorescent Screen
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Electron microscopy is analogous to visible-light microscopy,

but with higher resolution

T -
Light Microscopy ransmission

Light Source
(Lamp)
Condenser @
p— Lens

______ Specimen @
(Tissue Sections)
Objective )
= Lens
L — S

Electron Microscopy

Scanning
Electron Microscopy

Electron Source —— Q
Condenser
T e —

. Scanning Coil
(Beam Deflector)

Condenser
Lens @

Detector

: Eyepiece Projection
Lens - Lens
Electrons
3-Dimensional
Specimen
Image Viewed Image Viewed on Image Viewed
Directly Fluorescent Screen on Monitor

microbiologyinfo.com
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Spherulites are birefringent, or “doubly-refracting”

Calcite Crystal
Birefringence

Anisotropic crystals with two independent
refractive indices, n

B = [Nhigh - Niowl
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Spherulites are birefringent

Calcite Crystal
Birefringence

Anisotropic crystals with two independent
refractive indices, n

B = [Nhigh - Niowl

Incident light

8,
Refractive index © ny

Film (sample)

L=

A
&
=
&
0
m
(+5
0
=
=

Refractive index Ny
8,

Spell's formula ;
n, sin &,=n,sin &,

lllumination produces light waves with electric field vectors vibrate in all planes
perpendicular to the direction of propagation

Incident Beam
Polarzation (Unpolarized)

Direction of
propagation

This wave is polarized in z -direction
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lllumination produces light waves with electric field vectors vibrate in all planes
perpendicular to the direction of propagation

-

Polarization E Polarization
direction

Direction of
propagation

Direction of
propagation

This wave is polarized in a direction
at an angle of 60° with y-axis

This wave is polarized in z -direction
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LINEAR
POLARIZED LIGHT

Vertically
Polarized Light

Vertical
Polarizer

POLARIZERS

UNPOLARIZED
LIGHT

Transmission axis
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Horizontally  Transmission axis
Polarized Light

// Horizontal
“‘-‘“n Polarizer

LINEAR
POLARIZED LIGHT

Vertically
Polarized Light

Vertical
Polarizer

UNPOLARIZED
LIGHT

Transmission axis
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Figure 4 - Action of Polarized Sunglasses
Light Waves Vibrating
Perpendicular
to the Highway
Ll\?ht Waves
ibrating
ParaIIeI
to the Highway
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Polarization

direction Unpolarized

Polarized
beam

beam
\,_{ - \ ~

Propagation

Propagation Aicetin

direction

(a) ®)
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The amount of transmitted light through a pair of polarizers
depends on transmission axes’ orientation

Parallel

Analyzer,

Transmission axis

Transmission axis
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The amount of transmitted light through a pair of polarizers
depends on transmission axes’ orientation

Polarizer

Parallel

Analyzer,

Transmission axis

Transmission axis

Axes are parallel,
all light passes

140
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Polarizer

(a)

Parallel

Excluded
Light
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Transmitted
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Analyzer
Transmission
Axis
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The amount of transmitted light through a pair of polarizers
depends on transmission axes’ orientation

Parallel

Analyzer, Polarizer

Transmission axis
Transmission axis

Axes are near-parallel,
most light passes

Parallel
LYYYYY [ — [}
Excluded Transmitted Analyzer
Light Light Tranir;r(\_lssmn
is
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The amount of transmitted light through a pair of polarizers
depends on transmission axes’ orientation

Parallel Polarizer
Analyzer, Polarizer, Transmission

Transmission axis Axis
Transmission axis
) (b) (c)

(a

30°

Parallel
seeee [ —1 —
Excluded Transmitted Analyzer
Light Light Transmission
Axis
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The amount of transmitted light through a pair of polarizers
depends on transmission axes’ orientation

Parallel . Polarizer
Analyzer, Polarizer, Transmission
Transmission axis Axis
Transmission axis
(a) (b) (c) (d)

Arllalyzer

Transmission )
Axis Axes perpendicular
1

: - no light passes

080000000000 900

Parallel Crossed
LALll] | e— —_—
Excluded Transmitted Analyzer
Light Light Transmission
Axis
143
Seven-Segment Liquid Crystal Display (LCD)
Polarizer 2
Negative
Liquid Crystal Electrodes
andwich
Positive
Electrodes
Display
Twisted
Polarizer 1 Liquid
Crystal
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Birefringent Crystals Between Crossed Polarizers

Incident Beam
Pite (Unpolarized)

145

Birefringent Crystals Between Crossed Polarizers

Polarizer P\, Transmission axis

Plane
Polarized
Light
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Birefringent Crystals Between Crossed Polarizers
Object (Anisotropic Crystal)

e.g. spherulitic polymer

Polarizer P\ n,

White
Light

Polarized
Light

Sample = ||=
® ok et

()
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Birefringent Crystals Between Crossed Polarizers

Polatzer P\,  n,, OPlect(Anisotropic Crystal)

White
Light

Polarized
Light ,
le=||= Two Components
Tﬁﬁ:?;'\)eis ” Resulting From
(t) Birefringence
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Birefringent Crystals Between Crossed Polarizers

Polarizer P \ n, Object (Anisotropic Crystal)

Analyzer A / Polarizes both components
of the resulting light

Polarized
Light ‘
mple = ||= Two Components
Tﬁlackr?ess I Resulting From
(t) Birefringence
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Birefringent Crystals Between Crossed Polarizers

Polarizer P \ n, Object (Anisotropic Crystal)

Analyzer A 74

Light \ Retardation

Polarized
Light &
Forms a phase contrast
Sample = || Two Components image by waves that are
Thickness Resulting From out of phase
(t) Birefringence
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Spherulitic:
Polarizer-analyzer
pair transmits

Amorphous:
Polarizer-analyzer
pair blocks
illumination;
sample appears
dark

some illumination;
sample appears
dark and bright

(i.e. imaged with
phase contrast)
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Reference Sample Heat Sink

_ / Heater
“+— Heat Driver CPU
: 1
S~Thermocoupe |
. Temp. Control
Heal Resistor }
Temp
}__, Amplifier Recording
— Temp. Difference
Thermocoupe Amplinier (Heat Flux)
Recording
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