

Plan for today

- Syllabus review
- How to write a lab report
 - Sections
 - Writing for easy reading
 - Figures
 - Statistics errors, significant figures, etc.

EngrMSE 160, 2020 Winter 1/7/2020

2

Before we begin

- Write the following on your paper
 - Your year in the MSE program
 - One thing you're interested in (in or out of school)
 - What you hope your degree will help you do in life
 - Something(s) you didn't understand about this lecture (do this at the end)

4

Course	EngrMSE 160: Advanced Laboratory in Synthesis and Characterization of Materials				
Description	Synthesis and characterization of ceramic, polymer, and electronic materials. Connect the process, structure, properties, and performance of materials science knowledge to a hands-on laboratory setting				
	Pre-requisites: ENGR 54 or Chem 130 A-B or Chem 156				
Lecture	Tu/Th, 9:30 - 10:50 AM in SSTR 101		Only Tuesday		
Laboratory	M/W Section: 1:00-4:50pm ET 649/637 Tu/Th Section: 1:00-4:50pm ET 649/637		Staggered bc limited lab equipment and TAs		
Instructor	Professor William Bowman UCI Email: will.bowman Available by appointment				
Teaching Assistants	Hasti Vahidi, UCI email: vahidi Caroline Qian, UCI email: cyqia				
Lab Manager	Steve Weinstock UCI email: steve.weinstock				
Grading	Lab Reports (3)50%Final Presentations20%Pre-lab quizzes15%Team work10%Instructor discretion5%				
Campus Resources	Academics Academic Honesty Policies Conter for Excellance in Writin	and Communicati			

EngrMSE 160, 2020 Winter

1/7/2020

Course has 3 modules

• Polymer, ceramic, semicondutor

Lectures

- Week 1 How to write a lab report
- Week 2 Polymer synthesis
- Week 3 Polymer characterization
- Week 4 None Write lab reports
- Week 5 Ceramic synthesis
- Week 6 Ceramic characterization
- Week 7 None Write lab reports
- Week 8 Semiconductor synthesis
- Week 9 Semiconductor characterization
- Week 10 None Final presentations and lab reports

5

	Monday	Tuesday	Wednesday	Thursday
Week 1	No Lab	No Lab	No Lab	No Lab
		Lecture topic:		No Lecture
1/6 -		How to write a lab		
1/9		report		
Week 2	No Lab	No Lab	QUIZ ON POLYMER LAB	QUIZ ON POLYMER LAB
			MANUAL	MANUAL
1/13 -				
1/16			Polymers	Polymers
			- Crosslinking	- Crosslinking
			- DSC	- DSC
			- Hot-stage OM	- Hot-stage OM
		Lecture topic:		No Lecture
		Polymer synthesis		
Week 3	No Lab	No Lab	QUIZ ON POLYMER LAB MANUAL	QUIZ ON POLYMER LAB MANUAL
1/20 -			MINONE	MANOAL
1/23			Polymers	Polymers
-,			- Crosslinking	- Crosslinking
			- DSC	- DSC
			- Hot-stage OM	- Hot-stage OM
		Lecture topic:		No Lecture
		Polymer		
		characterization		
Week 4	Lab report writing	Lab report writing	M/W Groups polymer	T/Th Groups polymer
	workshop (optional)	workshop (optional)	lab reports due by 1 PM	lab reports due by 1 PM
1/27 -			PST	PST
1/30				
			No Lab	No Lab
		No lecture		No Lecture

Lab Calendar

M/W Group 1 – 14 students (section 19432) M/W Group 2 – 14 students (section 19433) T/Th Group 1 – 7 students (half of section 19431) T/Th Group 2 – 7 students (half of section 19431)

> Bowman Lab UCIRVINE

Tu/Th group 1 is last names A - LTu/Th group 2 is last name M - Z

Lab Calendar

M/W Group 1 – 14 students (section 19432) M/W Group 2 – 14 students (section 19433) T/Th Group 1 – 7 students (half of section 19431) T/Th Group 2 – 7 students (half of section 19431)

Email me if you want to switch

Lab Calendar

M/W Group 1 – 14 students (section 19432) M/W Group 2 – 14 students (section 19433) T/Th Group 1 – 7 students (half of section 19431) T/Th Group 2 – 7 students (half of section 19431)

Modules 2 & 3: two lab times

Week 5 2/3 – 2/6	QUIZ ON CERAMICS LAB MANUAL Ceramics - Si NP synthesis - ORMOSIL synthesis	QUIZ ON CERAMICS LAB MANUAL Ceramics - Si NP synthesis - ORMOSIL synthesis	Ceramics characterization - DLS - XRD/SEM - FTIR	Ceramics characterization - DLS - XRD/SEM - FTIR
Week 6 2/10 - 2/13	QUIZ ON CERAMICS LAB MANUAL Ceramics - Si NP synthesis - ORMOSIL synthesis	Lecture topic: Ceramic synthesis QUIZ ON CERAMICS LAB MANUAL Ceramics - Si NP synthesis - ORMOSIL synthesis	Ceramics characterization - DLS - XRD/SEM - FTIR	No Lecture Ceramics characterization - DLS - XRD/SEM - FTIR
Week 7 2/17 - 2/20	Lab report writing workshop (optional)	Lecture topic: Ceramic characterization Lab report writing workshop (optional)	M/W Groups ceramic lab reports due by 1 PM PST No Lab	No Lecture T/Th Groups ceramic lab reports due by 1 PM PST No Lab
		No lecture		No Lecture

Bowman Lab UCIRVINE

8

L	ļ	0,		
Week 9 3/2 – 3/5	QUIZ ON SEMICONDUCTOR LAB MANUAL Semiconductors - Resistivity measurements OR - Au NP synthesis	QUIZ ON SEMICONDUCTOR LAB MANUAL Semiconductors - Resistivity measurements OR - Au NP synthesis	Semiconductors - Resistivity measurements OR - Au NP synthesis	Semiconductors - Resistivity measurements OR - Au NP synthesis
		Lecture topic: Semiconductor characterization		No Lecture
Week 10	M/W Group 1 final presentations	T/Th Groups 1 & 2 final presentations	M/W Group 2 final presentations	No Lab
3/9 - 3/12		No Lecture		No Lecture
Week 11 3/14 - 3/20			M/W Groups semiconductor lab reports due by 1 PM PST	T/Th Groups semiconductor lab reports due by 1 PM PST

9

Final presentations

- Details are given in syllabus
- For the "How to give a talk" presentation, just come to lecture
 - Lessons are sprinkled throughout

How to write a lab report

11

12

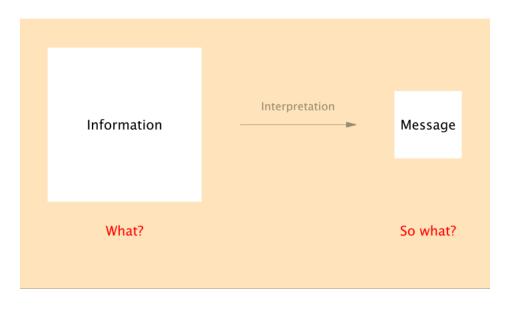
Effective communication is getting the message across

Get your audience to

- understand
- be able to act upon

a message

Bowman Lab UCIRVINE Effective communication is getting the message across


Get your audience to

- pay attention to
- understand
- be able to act upon

a message

What action to you want the instructors to do after they read your report?

Effective communication is getting the message across

13

Effective communication is optimization under constraints

Get your audience to

- pay attention to
- understand
- be able to act upon

a maximum of message(s), given constraints

Academic writing is a poor preparation for communication in the real world

 Academia
 Real world

 Audience
 Single, well-defined
 Multiple, unpredictable

 More knowledgeable
 Less knowledgeable

 Captive
 Selective

 Purpose
 Demonstrate knowledge
 Inform, convince, ...

Lab report sections

Abstract: 300 words or less, summary of each key results and significance.

Introduction: Explain relevance of project to the field.

Objective/Hypothesis: Clearly state the hypothesis of the work or the goal

Bowman Lab UCIRVINE

Who can give an example hypothesis? A statement of what you think will happen given your prior knowledge

Perhaps you have some hypotheses about this course...

Abstract: 300 words or less, summary of each key results and significance.

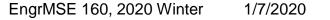
Introduction: Explain relevance of project to the field.

Objective/Hypothesis: Clearly state the hypothesis of the work or the goal

Who can give an example hypothesis? A statement of what you think will happen given your prior knowledge

Perhaps you have some hypotheses about this course...

Hypotheses and open questions


This project tests the hypothesis that overall electronic charge transport through the polycrystalline film is facilitated by the most conductive GBs, and within this "most-conductive" subset of GBs there are similar atomic and electronic structures.

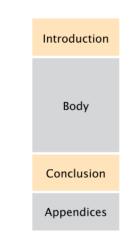
Bowman Lab UCIRVINE

Materials and Experimental Methods:

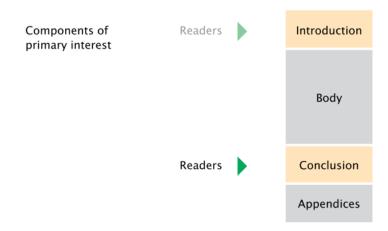
<u>Results</u>: Graphs and tables showing results

Discussion: Interpret and explain all results including observations.

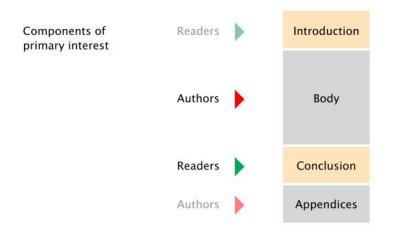
<u>Conclusion</u>: State the overall outcome(s) of the experiment and the overall significance <u>Works Cited</u>: Give a full bibliography in which you acknowledge all of the references <u>Appendix:</u> Include sketches, photographs, raw data

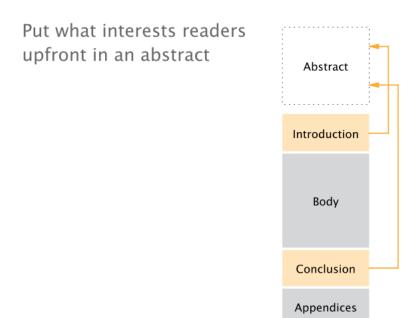

22

Lab report sections

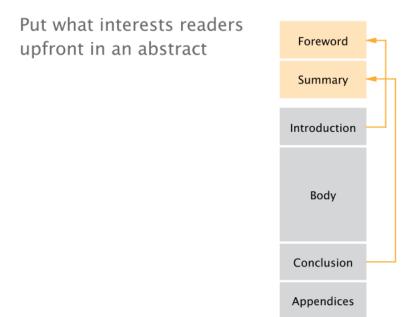

<u>Abstract</u>: 300 words or less, summary of each key results and significance. <u>Introduction</u>: Explain relevance of project to the field. <u>Objective/Hypothesis</u>: Clearly state the hypothesis of the work or the goal <u>Materials and Experimental Methods</u>: <u>Results</u>: Graphs and tables showing results <u>Discussion</u>: Interpret and explain all results including observations. <u>Conclusion</u>: State the overall outcome(s) of the experiment and the overall significance <u>Works Cited</u>: Give a full bibliography in which you acknowledge all of the references <u>Appendix</u>: Include sketches, photographs, raw data

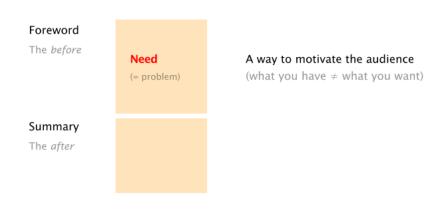
Most documents are chronological, except for the appendices


What interests readers is...



EngrMSE 160, 2020 Winter 1/7/2020


What interests readers is not what interests authors

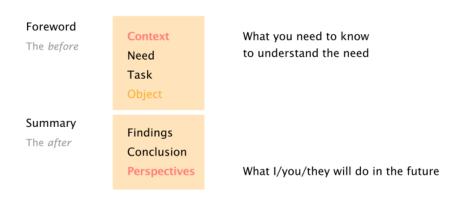


25

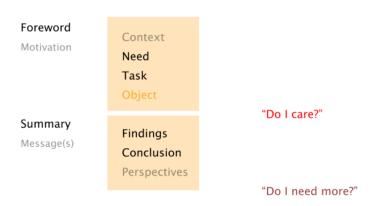


An effective summary includes both a *foreword* and a *summary*

EngrMSE 160, 2020 Winter 1/7/2020


32

An effective summary includes both a *foreword* and a *summary*



EngrMSE 160, 2020 Winter 1/7/2020

34

An effective abstract helps readers make informed decisions

EngrMSE 160, 2020 Winter 1/7/2020

Writing for easy reading

• "Writing to communicate effectively"

36

What is wrong with this abstract?

This paper describes PLTO, a link-time instrumentation and optimization tool we have developed for the Intel IA-32 architecture. A number of characteristics of this architecture complicate the task of link-time optimization. These include a large number of op-codes and addressing modes, which increases the complexity of program analysis; variable-length instructions, which complicates disassembly of machine code; a paucity of available registers, which limits the extent of some optimizations; and a reliance on using memory locations for holding values and for parameter passing, which complicates program analysis and optimization. We describe how PLTO addresses these problems and the resulting performance improvements it is able to achieve.

Context

37

38

On simple RISC architectures, post-link-time optimization of executable programs delivers significant performance

improvements. However, the applicability of this technique has not yet been evaluated for more complex CISC architectures such as the widely used Intel IA-32 processor family. We have developed PLTO, a link-time instrumentation and optimization tool for IA-32. This paper describes how PLTO addresses the complexities of this processor architecture and which analyses and optimizations contribute to the achieved performance improvements. Currently, PLTO achieves a moderate speedup of about 6% on average. We expect bigger speedups once we have solved a remaining problem involving significantly increased instruction cache misses.

On simple RISC architectures, post-link-time optimization of executable programs delivers significant performance improvements. However, the applicability of this technique has not yet been evaluated for more complex CISC architectures such as the widely used Intel IA-32 processor family. We have developed PLTO, a link-time instrumentation and optimization tool for IA-32. This paper describes how PLTO addresses the complexities of this processor architecture and which analyses and optimizations contribute to the achieved performance improvements. Currently, PLTO achieves a moderate speedup of about 6% on average. We expect bigger speedups once we have solved a remaining problem involving significantly increased instruction cache misses.

Task

Need

40

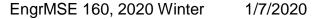
Object

On simple RISC architectures, post-link-time optimization of executable programs delivers significant performance improvements. However, the applicability of this technique has not yet been evaluated for more complex CISC architectures such as the widely used Intel IA-32 processor family. We have developed PLTO, a link-time instrumentation and optimization tool for IA-32. This paper describes how PLTO addresses the complexities of this processor architecture and which analyses and optimizations contribute to the achieved performance improvements. Currently, PLTO achieves a moderate speedup of about 6% on average. We expect bigger speedups once we have solved a remaining problem involving significantly increased instruction cache misses.

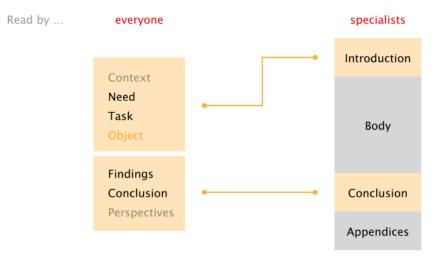
Findings

Bowman Lab UCIRVINE

EngrMSE 160, 2020 Winter 1/7/2020

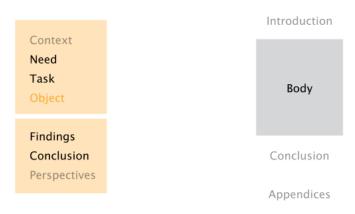

42

BowmanLab

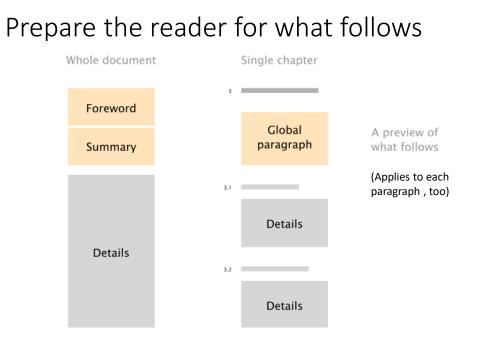

UCIRVINE

Conclusion Perspect.

What about the other sections?



Abstract *versus* full document: much more than copy/paste



45

First tell the **beginning** and the **end**, then the rest—whether short or long

47

48

An example paragraph

Single-use, disposable medical devices are prepackaged and sterilized by the manufacturer. The packaging is chosen to provide protection for the product, to facilitate sterilization, to maintain sterility, and to be easy to use. Reusable devices, by contrast, must be durable both in service and in their ability to withstand repeated sterilization. ...

> Bowman Lab UCIRVINE

EngrMSE 160, 2020 Winter 1/7/

1/7/2020

Single-use, disposable medical devices are prepackaged and sterilized by the manufacturer. The packaging is chosen to provide protection for the product, to facilitate sterilization, to maintain sterility, and to be easy to use. Reusable devices, by contrast, must be durable both in service and in their ability to withstand repeated sterilization. ...

Medical devices may be broadly divided into two categories, disposable and reusable, having different sterilization requirements.

Single-use, disposable medical devices are prepackaged and sterilized by the manufacturer. The packaging is chosen to provide protection for the product, to facilitate sterilization, to maintain sterility, and to be easy to use. Reusable devices, by contrast, must be durable both in service and in their ability to withstand repeated sterilization. ...

49

Prepare the readers for content and structure, with a **topic sentence**

announces the structure

Medical devices may be broadly divided into two categories, disposable and reusable, having different sterilization requirements.

announces the contents

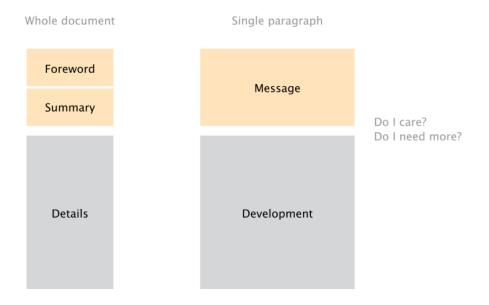
Similar strategy for discussing figures

Figure 2 shows the evolution of the germanium content in the SiGe layer. Obviously there is a nearly linear decrease of the germanium content with increasing fluence, apart from a near constant region around 2×10^{17} at/cm². Knowing the number of atoms that has been sputtered and the O₂ fluence, it is then quite easy to calculate the germanium sputter yield.

EngrMSE 160, 2020 Winter 1/7/2020

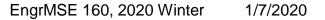
To be kept Ineffectively redundant

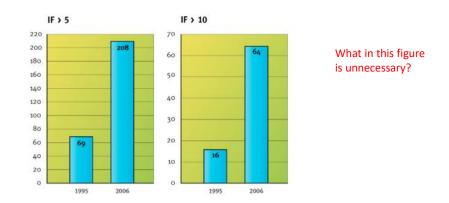
Figure 2 shows the evolution of the germanium content in the SiGe layer. Obviously there is a nearly linear decrease of the germanium content with increasing fluence, apart from a near constant region around 2×10^{17} at/cm². Knowing the number of atoms that has been sputtered and the O₂ fluence, it is then quite easy to calculate the germanium sputter yield.

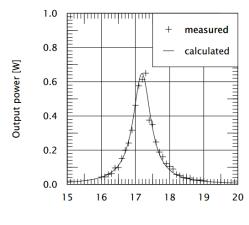

54

The germanium content decreases linearly with increasing fluence apart from a near constant region around 2×10^{17} at/cm² (Figure 2). Knowing the number of atoms that has been sputtered and the O₂ fluence, it is then quite easy to calculate the germanium sputter yield.

EngrMSE 160, 2020 Winter 1/7/2020

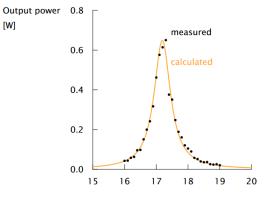

Again, state your message upfront


Bowman Lab UCIRVINE


55

A few words about figures

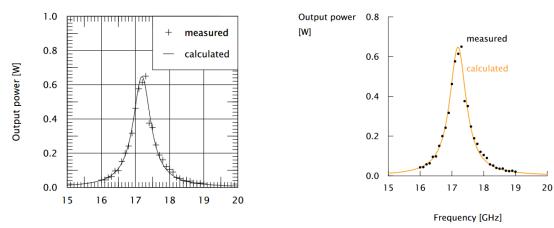
Nonverbal aspects, such as graphs, are up for improvement, too


Frequency [GHz]

A poor graph

The graph exhibits a very low signal-to-noise ratio, with excessive tick marks and uncalled-for grid lines, and comparatively little ink to represent the data.

The graph is not intuitive, for the separate legend (a key to the symbols) prevents global processing. In a sense, it is a graph to *read*, not a graph to *view*.


Frequency [GHz]

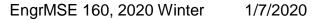
A good graph

The graph is plainer and therefore better contrasted: the background no longer interferes with the data, yet it provides sufficient information about them.

The graph is more intuitive: the labels, positioned next to the data, provide the required clarification where it is needed (when viewers look at the data).

59

Frequency [GHz]


Use correct significant figures and give error

	Ce	Gd	Pr
nominal conc (mol fraction)	0.85	0.11	0.04
grain conc (mol fraction)	0.85 ± 0.03	0.10 ± 0.03	0.05 ± 0.01
grain boundary conc (mol fraction)	0.62 ± 0.10	0.26 ± 0.07	0.13 ± 0.03
linear coeff $A \times 10^{-3}$ (mol fraction/deg)	-6.1	3.8	2.1
linear coeff $B \times 10^{-2}$ (mol fraction)	88	9.3	3.6

References

• Jean Luc Dumont, "Modern myths: Shortcomings in scientific writing" <u>www.principae.be</u>

> Bowman Lab UCIRVINE

